MATH 402 Homework 12 Due Wednesday, December 12, 2018

Exercise 1.

a. Recall that a Möbius transformation is a function of the form

$$f(z) = \frac{az+b}{cz+d},$$

where $a, b, c, d \in \mathbb{C}$ are constants such that $ad - bc \neq 0$. Prove that the composition of two Möbius transformations is again a Möbius transformation by finding the new constants A, B, C, D. (You don't need to check that they satisfy $AD - BC \neq 0$.

- b. Recall that if we rescale all the constants a, b, c, d by the same complex number $\lambda \neq 0$, we get the same function. Find a value of λ such that the rescaled constants satisfy a'd' b'c' = 1.
- c. Compare your answer in a. to the product of two matrices

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} a' & b' \\ c' & d' \end{bmatrix}$$

Use this observation to define a map $\Phi : SL_2(\mathbb{C}) \to \mathcal{M}$, which satisfies $\Phi(AB) = \Phi(A) \circ \Phi(B)$ for all $A, B, \in SL_2(\mathbb{C})$. (Here $SL_2(\mathbb{C})$ is notation for the set of all 2×2 matrices with coefficients in \mathbb{C} which have determinant (ad - bc) equal to 1.) Use your answer from b. to argue that this map is surjective.

Exercise 2. In class, we claimed that the Möbius transformations which preserve the unit disk (i.e. the Poincaré disk) are those which can be written in the form

$$f(z) = \beta \frac{z - \alpha}{\overline{\alpha}z - 1},$$

where α and β are complex constants with $|\alpha| < 1$ and $|\beta| = 1$. In this question, we will prove that a function of this form does indeed preserve the unit disk.

a. Show that if $|z|^2 = 1$, then $|f(z)|^2 = 1$ too, so the function f preserves the unit circle.

b. At this stage, f must either preserve the inside of the disk, or swap the outside of the disk with the inside of the disk. (The function $\frac{1}{z}$ swaps the two, while the function id doesn't.) So we only need to check what happens to one point z with $|z|^2 < 1$: try to find a point z that makes your life easy, and prove that $|f(z)|^2 < 1$.

Exercise 3. In this exercise, we will consider functions of the form

$$f(z) = \frac{z - \alpha}{1 - \overline{\alpha}z} \in \mathcal{M}^P$$
, with $|\alpha| < 1$.

(Note, in the notation of the previous question, $\beta = -1$.) We will try to provide some justification for thinking of this function as translation along the line $L = \overline{0\alpha}$.

- a. Choose a point $\alpha \neq 0$ in the disk. Draw the line $L = \{t\alpha\}$. Imagine what translation along the line L should do... Is the line L invariant or not? What do you expect to happen to the omega-points of L?
- b. Find the coordinates of the points where L intersects the boundary of the disk (i.e. the omega-points of L). Prove that they are fixed points of f(z).
- c. Prove that $f(L) \subset L$, so L is indeed invariant. (That is, any point in L has the form $t\alpha$ for some $t \in \mathbb{R}$; prove that $f(t\alpha) = t'\alpha$ for some other $t' \in \mathbb{R}$.)
- d. Now we will check in a special case that the distance $d_P(t\alpha, f(t\alpha))$ is constant, just like for translations in Euclidean geometry. From now on, assume that $\alpha = \frac{1}{2}$. Prove that $d_P(0, \alpha) = \ln 3$. Prove that $d_P(t\alpha, f(t\alpha)) = \ln 3$ for any choice of t.