MATH 402 Homework 7 Due Friday October 26, 2017

Exercise 1. [10 pts] Let T be a translation which is not the identity. Prove that ℓ is an invariant line for T if and only if ℓ is parallel to the displacement vector v of T.

- **Exercise 2.** a. [2 pts] Let Rot_{ϕ} be rotation about a point O by angle ϕ . Use reflections to prove that the inverse of Rot_{ϕ} is rotation about O by angle $-\phi$.
- b. [3 pts] Let Rot_{ψ} be rotation about the same point O by angle ψ . Use reflections to prove that $Rot_{\phi} \circ Rot_{\psi}$ is again a rotation about O.
- c. [4 pts] Let A and B be two different points. Let R_1 be rotation about A by 180°, and let R_2 be rotation about B by 180°. Prove that $R_2 \circ R_1$ is a translation. What is the displacement vector?
- d. [3 pts] Let \mathcal{R} denote the set of all rotations. Let \mathcal{R}_O denote the set of all rotations with centre of rotation O. Is \mathcal{R} a group? What about \mathcal{R}_O ?
- **Exercise 3.** a. [8 pts] Suppose we are given a coordinate system with origin O. Let Rot_{ϕ} denote rotation about O by angle ϕ . Let C = (x, y) be a point not equal to O, and let T denote the translation with displacement vector v = (x, y). Prove that $T \circ Rot_{\phi} \circ T^{-1}$ is rotation about C by angle ϕ , by carrying out the following steps.
 - i. Let ℓ be the line through O perpendicular to \overrightarrow{OC} . Let m be the perpendicular bisector of \overrightarrow{OC} . Let n be the angle bisector of the angle made at O by ℓ and $Rot_{\phi}(\ell)$. Using only reflections these lines, write expressions for T, T^{-1} , and Rot_{ϕ} .
 - ii. Use this to prove that $T \circ Rot_{\phi} \circ T^{-1} = r_{r_m(\ell)} \circ r_{r_m(n)}$. Hint: recall the formula from Ex. 1(a) on the Worksheet from October 12.
 - iii. Prove that $r_m(n)$ and $r_m(\ell)$ intersect at $C = r_m(O)$ with angle $\frac{1}{2}\phi$. Argue that $T \circ Rot_{\phi} \circ T^{-1}$ is rotation about C by angle ϕ .
- b. [7 pts] Given a coordinate system with origin O, let ℓ be a line passing through O. Let r_x denote reflection across the x-axis. Prove that $r_{\ell} = Rot_{\phi} \circ r_x \circ Rot_{-\phi}$ for ϕ the angle formed by the x-axis and the line ℓ . Hint: Start by writing Rot_{ϕ} as a composition of two reflections. Use the same ideas as in part (a).

Exercise 4. [8 pts] Let $G = T_{AB} \circ r_{\ell}$ be a glide reflection, where the displacement vector \vec{AB} is non-zero. Show that

- a. the only invariant line under G is ℓ .
- b. G has no fixed points. Hint: If P is a fixed point for G, show that it is also a fixed point for $G \circ G$. What kind of isometry is $G \circ C$?

Remember that in addition to the points assigned to each question, you will receive up to five further points for neatness and organization.