MATH 402 Homework 3 Due Friday, September 21, 2018

Exercise 1.

a. [8 points] Suppose you have a triangle ΔABC in which $AB \neq BC$. (Without loss of generality, you can assume that AB > BC.) Prove that the angles opposite these sides are also not congruent, and in fact the angle opposite the longer side \overline{AB} is larger than the angle opposite the shorter side \overline{BC} . (Hint: extend the shorter side to make an isosceles triangle. You may wish to use the Exterior Angle Theorem.)

Definition 1. Let ℓ be a line and P a point not on ℓ . Drop the perpendicular line from P to ℓ , and call the intersection point Q. We say that the *distance* from P to ℓ is the length of the segment \overline{PQ} .

- b. [6 points] Prove that if Q' is any other point on ℓ , PQ' > PQ.
- c. [8 points] Prove that Playfair's Postulate (or the Parallel Postulate, or other results we've already proved using them) implies the following:

Let ℓ and m be two parallel lines, and let A, B be any two points on m. Then the distance from A to ℓ is equal to the distance from B to ℓ . (We say that ℓ and m are **equidistant**.)

d. [8 points] Prove the converse: if any two parallel lines are equidistant, Playfair's Postulate must hold. (Try a proof by contradiction: suppose you have two lines m and n parallel to ℓ and both passing through some point P. Choose a point X on ℓ and think about its distance from m and n.)

Exercise 2. The point of this exercise is to reinforce the material you learned in this week's project.

- a. [2 points] Let c be a circle with centre O and radius r. Let P be any point. Define the power of P with respect to the circle C.
- b. [3 points] Prove that the power of P is positive when P is outside the circle, negative when P is inside the circle, and zero when P is on the boundary of the circle.

Exercise 3. [10 points] Prove the SSS similarity property: if you have two triangles such that the sides are all in proportion, the triangles are similar. (You may use the similarity properties we have already proved in lecture: AAA similarity and/or SAS similarity.)

Remember that in addition to the points assigned to each question, you will receive up to five further points for neatness and organization.