MATH 402 Practice questions Monday, 3 December, 2018

Exercise 1. Let ℓ be a hyperbolic line, with P a point not on ℓ .

- (1) Define the following terms:
 - (a) A line m which is *limiting parallel* to ℓ through P; and in that case, the *angle of parallelism* of ℓ at P.
 - (b) A line *m* through *P* which is ultraparallel to ℓ .
- (2) Prove that if ℓ and m have a common perpendicular, they must be ultraparallel.
- (3) Prove that ℓ and m cannot have more than one common perpendicular.

Exercise 2. Let ABCD be a Lambert quadrilateral with right angles at A, B, C.

- (1) Draw a picture of the Lambert quadrilateral. Label the right angles. What do you know about the angle at D? What do you know about opposite sides of the Lambert quadrilateral (e.g. \overline{AB} and \overline{CD} , or \overline{BC} and \overline{AD})?
- (2) Extend the side \overline{BC} in both directions to points E (on \overrightarrow{CB}) and F (on \overrightarrow{BC}) such that BE = CF. Draw this on your picture.
- (3) Prove that the angles $\angle BEA$ and $\angle CFD$ are not congruent.

Exercise 3. In hyperbolic geometry, there is a regular tiling of type (4, 6), in which each tile is a regular quadrilateral.

- (1) How many tiles meet at each vertex?
- (2) If we divide a quadrilateral tile into 4 congruent isosceles triangles meeting at the centre of the quadrilateral, what will be the base and summit angles of each isosceles triangles? (Justify your answer.)

Exercise 4. Suppose that P = (0, a) is a point in the Klein model, with a > 0. Let (x, y) be the corresponding coordinates in Poincaré geometry.

- (1) How do you know that x = 0?
- (2) Which is true about y?
 - *y* < 0
 - y = 0
 - $y \in (0, a)$
 - y = a
 - $y \in (a, 1)$.

Exercise 5. Let ΔABC be an equilateral triangle with interior angle measure 45° (in hyperbolic geometry). Suppose that its area is 180 units. Let ΔXYZ be an isosceles triangle with summit angle 90° and base angles each 40°. Calculate the area of this triangle.

(a)	Limiting parallels exist in the Klein model but not the Poincaré	True	False
	model.		
(1)		m	D 1
(b)	Pasch's axiom is true for omega-triangles, but it's not an axiom	True	False
	anymore.		
(c)	A limiting parallel is a special kind of ultraparallel.	True	False
(d)	Every line has exactly two omega points.	True	False
	Every fine has exactly two official points.	inac	1 and
(a)	A Casebari quadrilataral has avastly two consumpt sides	True	False
(e)	A Saccheri quadrilateral has exactly two congruent sides.	True	Faise
(f)	AAA congruence is a theorem in hyperbolic geometry, but not in	True	False
	Euclidean geometry.		
	5 0	T	D 1
(g)	A finite symmetry group which has $2n$ elements is dihedral.	True	False
(h)	It is possible to cut a Lambert quadrilateral into two Saccheri	True	False
(/	* *		
	quadrilaterals.		
(i)	Given two omega points, Ω_1, Ω_2 there is exactly one line which	True	False
	contains both of them.		

Exercise 6. Are the following statements true or false?