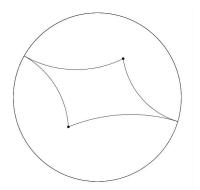
MATH 402 Final exam practice questions

Exercise 1 Consider the following figure in hyperbolic geometry. Prove that the sum of the two angles at the real vertices is less than 360° . Find the area of this figure, in terms of the constant k^2 .



- **Exercise 2** (a) Draw a picture of 3 Poincaré lines ℓ , m, and n such that ℓ and m are ultraparallel, and n and m are ultraparallel, but ℓ and n intersect at a single point P.
- (b) Let $f = r_m \circ r_\ell$.
 - *i.* What kind of isometry is this?
 - ii. What fixed points does it have?
- (c) Let $g = r_n \circ r_m$.
 - i. What kind of isometry is this?
 - ii. How many omega-points (if any) are fixed by this isometry?
 - iii. g can be written as a Möbius transformation of the form

$$g(z) = \beta \frac{z - \alpha}{\overline{\alpha}z - 1}$$

. What can you say about $|\alpha|$ and $|\beta|$?

(d) Let $h = g \circ f$.

- i. What kind of isometry is this?
- ii. Is this isometry orientation-preserving?
- (e) Give the definition of a group.
- (f) Recall that in Euclidean geometry, the set of translations (including the identity element, viewed as translation by zero) forms a group. Use your results from above to argue that the set of translations (including the identity) in the Poincaré disk does not form a group.

Exercise 3 In hyperbolic geometry, we can have a tiling of type (3, 10). Suppose that a tile in this tiling has area 144. Now consider a different tiling, one of type (5, 4). Prove that a tile in this new tiling has area 72.

Exercise 4 Given a line ℓ and a point P not on ℓ :

- (a) Assume we are in Euclidean geometry. What does Playfair's postulate say about P and ℓ ?
- (b) Assume we are in hyperbolic geometry.
 - i. What does the hyperbolic parallel postulate say about P and ℓ ?
 - ii. The fundamental theorem of parallels in hyperbolic geometry tells us that there are two limiting parallels to ℓ through P. Why does this imply that there must be infinitely many ultraparallels to ℓ through P? (Drawing a picture might help you explain your answer.)
 - iii. In particular, through any point P not on ℓ there are at least two lines through P that are ultraparallel to ℓ . Use this to argue that if f is a hyperbolic isometry such that ℓ and all lines ultraparallel to ℓ are invariant under f, then f = Id.

Exercise 5 (a) State Pasch's axiom.

- (b) Let $\triangle ABC$ be a triangle, and let X be a point in the interior of the triangle. Prove that the ray \overline{AX} passes through the opposite side, \overline{BC} .
- **Exercise 6** Let ABCD be a Saccheri quadrilateral.
- (a) Use ABCD to construct a Lambert quadrilateral.
- (b) Use ABCD to construct a quadrilateral with all four angles congruent. What can you say about the sides of this quadrilateral?

Exercise 7 (a) What does it mean for an isometry to have finite order?

- (b) What kind of Euclidean isometries can or must have finite order?
- (c) What Euclidean isometries have order two?

Exercise 8 Let (z_1, z_2, z_3) be distinct complex numbers. Explain how you can use the cross-ratio to define a Möbius transformation f sending $z_1 \mapsto 1, z_2 \mapsto 0, z_3 \mapsto \infty$. Explain why f is the unique Möbius transformation with this property.

Exercise 9 Give careful definitions. To receive full marks, you must give the definition of the term, not an equivalent characterization.

(e.g. a Euclidean translation was defined in class as an isometry which can be written as the composition of two reflections across parallel lines; we later proved that a Euclidean translation is an isometry which can be expressed in the form $T(x, y) = (x, y) + (v_1, v_2)$. Saying the first of these things would get you full marks; saying the second would get only part marks.)

- (a) When two points A, B are on the same side of a line ℓ .
- (b) The Klein distance function.
- (c) The inverse of a point P with respect to a circle c = (O, r).
- (d) A limiting parallel (model-independent).
- (e) A regular tiling.
- (f) The order of a group element $g \in G$.
- (g) When two triangles are similar.
- (h) A Möbius transformation.