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Abstract

The self-rotation number, as defined by Peckham, is the rotation
rate of the image of a point about itself. Here we use the notion of
“turning angle” to give a simplified algorithm to compute the self-
rotation number for maps that “avoid an angle.” We show that the
orientation preserving Hénon map does avoid an angle. Moreover, the
self-rotation number for orbits of the Hénon map can be computed
once and for all at the anti-integrable limit by a simple algorithm
depending upon the symbol sequence for the orbit.
AMS classification scheme numbers: 58F05, 58F03, 58C15

1 Introduction

The rotation number of an orbit of a map measures the average fraction of

a circle through which the orbit turns per iteration of the map. It is most
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easily defined for maps of the circle or of the annulus, where the topology of

the space provides a natural angle.

More formally, one defines the rotation number of a circle map by lifting

the angle variable from the circle to its covering space, the line. The map

extends as well to a “lift”, which is defined as a map on the covering space

that gives the original dynamics when projected back to the circle [1]. For

example, if f is a map of the circle S, and θ represents the angle coordinate,

we let θ̃ ∈ R be the lifted angle. Then if θ̃ mod 2π = θ, they represent the

same physical point. A lift f̃ is any map such that

f̃(θ̃) mod 2π = f(θ̃ mod 2π)

It is easy to see that any two lifts differ at most by some integer multiple of

2π. Given a lift, the rotation number of an orbit is defined as

ρ(θ) = lim
t→∞

f̃ t(θ) − θ

2πt
, (1)

providing the limit exists. The rotation number of an orbit does depend upon

the lift, but since lifts only differ by multiples of 2π, ρ mod 1 is independent

of the lift.

An orbit of period q always has a rational rotation number since there is

always some integer p such that

f̃ q(θ0) = θ0 + 2πp , (2)

so that ρ = p/q. Note that p is the integer number of times that the orbit

winds around the circle, so that ρ is the average number of times the orbit

winds around the circle per iteration of the map. The rotation number

of a periodic orbit does not change if the orbit persists under changes in

parameter, because the integer p cannot change.

For a map of the annulus, a lift is similarly defined in terms of the θ com-

ponent of the map. For example if (θ′, r′) = f(θ, r), then the first component,

f1, must be lifted to obtain a map on the strip. The fact that the rotation

number on the annulus is an invariant is one key idea in the existence proof

for ordered orbits in “twist maps” [2, 3].
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If the phase space is the plane, then one normally defines the rotation

number relative to another orbit, such as a fixed point x∗. Removing x∗ from

the plane leaves an annulus: R
2 \ {x∗} ∼= S × R

+. In this case the rotation

number measures the average rate of rotation around x∗. One problem with

this definition is that in order to compute the rotation number of an orbit,

one must do it “relative” to the fixed point. Moreover, this rotation number

can change discontinuously upon continuous parameter changes even when

there are no bifurcations. It is enough, for example, for the fixed point to

move from inside to outside the convex hull of the orbit.

An alternative notion of rotation number that does not suffer this defect is

the “self-rotation” number of Peckham [4], see §3. The self-rotation number

of a periodic orbit is invariant under parameter changes in the map, so long

as the orbit persists. However in order to compute this rotation number, one

must explicitly construct a lift for certain polar coordinates defined for pairs

of points in the phase space. This can be done by a continuation method,

but is not computationally efficient.

In §4 we discuss an alternative construction of the self-rotation number

based on the “turning angle,” defined as the angle through which the vector

from x to its image f(x) turns upon iteration. When this turning angle does

not take all possible values on the circle, we say that the map avoids an angle.

In this case we can obtain the self-rotation number without constructing a

lift.

We will see in §5 that the quadratic diffeomorphism of the plane, the

Hénon map, avoids an angle when it is orientation preserving. We will use

the self-rotation number to classify periodic orbits of the Hénon map, and

to find restrictions on the type of bifurcations that can occur. Moreover,

we will see in §5.5 that the self-rotation number can be computed at the

“anti-integrable” limit for orbits of the Hénon map, and we can associate a

rotation number with the symbol sequence for orbits of the map.

We begin by using the turning angle to define rotation numbers for poly-

gons.
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2 Self-Rotation Numbers for Polygons

Even if there is no underlying dynamical system, we can still compute rota-

tion numbers for ordered sequences of points in the plane, that is, polygons.

In this section we define two rotation numbers, the rotation number “relative

to a point”, and the “self-rotation number.”

A plane polygon, Pn, is a closed curve defined by an ordered sequence

of n vertices xi ∈ R
2, i = 0, . . . , n − 1 that are connected by line segments

[xi, xi+1], see Fig. 1. We assume that neighboring points of the polygon are

distinct, but allow the sides to intersect. For convenience, we let xn = x0,

and x−1 = xn−1. Alternatively a polygon can be represented by the set of

vectors that give its sides

vi = xi − xi−1 , i = 0 . . . n − 1 .

We require that vi �= 0, since otherwise the polygon does not have n vertices.

Note that only n−1 of these vectors are independent; the remaining variable,

corresponding to x0, say, represents the position of the polygon in the plane.

Let Φα(v1, v2) be the angle between two nonzero vectors v1 and v2 in the

plane, i.e.,

Φα(v1, v2) = arctanα(v1 × v2, v1 · v2) , (3)

where tan(arctanα(y, x)) = y
x

and the arctan function is chosen to have the

range (α, 2π + α]. Perhaps the most natural choice would be α = −π;

however, we allow for other possible choices for our applications below.

We first consider the rotation number with respect to a “center” point

p. This can be defined using the angle Φα(xi − p, xi+1 − p), the angle that

the side vi+1 subtends from p. The rotation number with respect to p is the

average subtended angle:

ρp(Pn, α) =
1

2πn

n−1∑
i=0

Φα(xi − p, xi+1 − p),

provided that p �= xi. This definition is quite natural, and at least when

α = −π has some nice properties:
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Figure 1: A polygon P6 and the turning angle ϕ. The angle subtended by the
side vi+1 is δi = Φα(xi − p, xi+1 − p). The polygon is star convex, with kernel K.

a) Since Pn is closed, nρp is an integer. Moreover, since α < Φα ≤ α+2π,

α

2π
< ρp(Pn, α) ≤ 1 +

α

2π
. (4)

b) ρp(Pn,−π) is invariant under deformations of Pn, and motions of p so

long as p does not cross a side of Pn. This follows from the fact that

Φα is continuous until it reaches the value α or α + 2π.

c) ρp(Pn,−π) changes by ± 1
n

if p crosses a side [xi, xi+1] of Pn, depending

on the change of orientation of the triangle [p, xi, xi+1].

d) If p is outside the polygon then ρp(Pn,−π) = 0 (A point p is “outside”

of Pn if p can be moved to infinity without crossing the polygon).

The disadvantage of this notion of rotation number is its dependence on the

position of the center point, p.

A rotation number that is independent of a choice of center is the “self-

rotation number.” To obtain this, define the “turning angle” of two successive
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sides of the polygon by

ϕi = Φα(vi, vi+1) ,

see Fig. 1. We define the self-rotation number of Pn to be the average turning

angle:

ρs(Pn, α) =
1

2πn

n−1∑
i=0

ϕi , (5)

where vn ≡ v0.

For example, a “two polygon” has two sides v0 = −v1. If the angle

π ∈ (α, α + 2π], then both Φα(v0, v1) = Φα(v1, v0) = π, and so ρs = 1
2
. More

generally,

ρs(P2, α) =
1

2
+

⌊
α

2π
+

1

2

⌋
.

where � � indicates the floor function.

When α = −π, the rotation number of a triangle is ±1
3

depending on

whether it is oriented positively or negatively, respectively. However, for

other values of α, the situation is not quite so simple. For example if α = π
2
,

then the rotation number of a positively oriented obtuse triangle is 2
3
, while

that of a positively oriented acute triangle is 1
3
. We show some examples of

4 and 5 sided polygons and their rotation numbers in Fig. 2.

The self-rotation number has the following simple properties:

a) ρs is independent of the position of the polygon in the plane, its orien-

tation, and its scale.

b) Since Pn is closed, nρs is an integer. Moreover ρs has the range (4).

c) The rotation number ρs is constant under deformations of Pn providing

adjacent sides do not have angle α: If α = −π this means that adjacent

sides cannot cross.

The self-rotation number and the rotation number with respect to a point

can be the same for certain polygons and an appropriate choice of p. For

example, it can be easily seen that for any convex polygon, ρs(Pn,−π) =

ρp(Pn,−π) when p is in the interior of Pn.1 More generally, consider the
1However, this result is not necessarily true for other choices of α.



2 SELF-ROTATION NUMBERS FOR POLYGONS 7

1
4

0
4

1
4

0
5

1
5

2
5

Figure 2: Self-rotation numbers for some simple polygons with α = −π. If instead
α = −3π
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respectively.

class of star-convex polygons:

Definition 1 (Open Star-Convex). A set S is called open star-convex if

there exists an open subset K of S, the “kernel,” such that for each x ∈ K,

and every y ∈ S the line segment connecting x to y lies entirely in S.

Star-convexity is typically defined without the requirement that the kernel

be open, however, we need this property below. The kernel can be obtained as

the intersection of the cones from all of the vertices of the polygon. According

to this definition the 1st, 3rd and 4th polygons in Fig. 2 are open star-convex.

The 2nd and 6th polygons are star-convex, but their kernels are single points.

Lemma 1. Suppose Pn is an open star-convex polygon. Then for α = −π

and each p in the kernel of Pn, the rotation number relative to p equals the

self-rotation number.

Proof. When p ∈ K, each of the triangles Ti = [p, xi, xi+1] has the same

orientation, because p is in the interior of each of the cones from the vertices.

Suppose that the triangles are positively oriented. The interior angle of Ti at
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Figure 3: Polygon with rotation number ρs(P7,−π) = 3/7 for which ρp(P7,−π) <

3/7 for every reference point p.

p is δi ≡ Φ−π(xi − p, xi+1 − p), and these angles are positive by assumption,

see Fig. 1. Denote the interior angle of Ti at xi by βi and that at xi+1 by γi,

so that δi + βi + γi = π. Note that the turning angles are also positive, and

that Φ−π(vi, vi+1) + βi + γi−1 = π. Thus we have

ρp(Pn,−π) =
n−1∑
i=0

δi =
n−1∑
i=0

(π − βi − γi) =
n−1∑
i=0

(π − βi − γi−1)

=
n−1∑
i=0

Φ−π(vi, vi+1) = ρs(Pn,−π) .

The case when the polygon is negatively ordered follows similarly. ✷

Though this lemma shows that the two rotation numbers agree for suffi-

ciently nice polygons, there are polygons with more than six sides for which

ρs(Pn,−π) �= ρp(Pn,−π) for any choice of p; see Fig. 3 for an example.
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3 Self-Rotation Number for Maps

The “self-rotation” number of Peckham [4] is defined for orbits of any home-

omorphism f on R
2. We start by choosing distinct points x and y in R

2, and

letting:

r(x, y) = ||y − x||2, θ(x, y) =
y − x

r
, (6)

see Fig. 4. Here we use the natural embedding of S into R
2 so that θ ∈ S is

represented by a unit vector in the plane. We can now extend f to a map on

pairs of points, and write the result in terms of r and θ:

r′(x, y) = r(f(x), f(y)) , θ′(x, y) = θ(f(x), f(y)) .

Thus f induces a map F defined on R
+ × S × R

2 given by

(r′, θ′, x′) = F (r, θ, x) ,

where the vector y − x is expressed as (r, θ, x) ∈ R
+ × S × R

2 using (6).

Since the space R
+ × S × R

2 has a single noncontractible loop, we can

construct a lift F̃ which is a map on R
+ ×R×R

2. Here we denote the angle

coordinate by θ̃ ∈ R, and let θ̃′ = F̃2(r, θ̃, x). To construct the lift, select

a base point (x, y) and choose particular values for (θ̃, θ̃′) equivalent to the

unit vectors (θ, θ′). The values elsewhere are obtained by continuity. For

example, a lift could be constructed along an orbit by choosing any curve

C = {(x(t), y(t)) : 0 ≤ t ≤ 1} that connects the base point C(0) = (x, y) to

C(1) = (f(x), f(y)) so that θ̃(t) = θ̃(x(t), y(t)) is continuous and θ̃′ = θ̃(1).

Then the image of this curve, F (C) continuously connects θ̃′ to the next angle

θ̃′′, see Fig. 4.

The self-rotation number is the rotation rate of a point x about itself. To

obtain this, we restrict the map F̃ to the graph y = f(x). The restriction is

well defined provided that x is not a fixed point of f . The rotation number

is defined as the average increase in θ̃ per iteration, just as for the circle map

(1):

ρs(x) = lim
t→∞

1

2πt

[
F̃ t

2

(
r(x, f(x)), θ̃(x, f(x)), x

)
− θ̃(x, f(x))

]
, (7)
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Figure 4: Sketch of the polar coordinates and the lift to define the self-rotation
number.

providing this limit exists. Just as for the rotation number (1), ρs mod 1 is

independent of the choice of lift. The self-rotation number has several nice

properties [4]:

a) If f has an invariant circle S ∈ R
2, then for an orbit on the circle the

self-rotation number is the circle map rotation number.

b) ρs can be extended to a fixed point of f by defining the rotation number

of x∗ to be limx→x∗ ρs(x).

c) The self-rotation number of a periodic orbit cannot change under con-

tinuous parameter changes, since it is a rational number.

The construction of F̃ may be difficult to do explicitly. For example,

consider the Hénon map,

f(x1, x2) = (x2 − k + x2
1,−bx1) . (8)

An example of the unit vector field θ(x, f(x)) for this map in shown in Fig. 5.

The map has two fixed points when 4k + (1 + b)2 > 0, one has Poincaré

index −1, the other and has Poincaré index +1. The change in θ̃ on a loop
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encircling a single fixed point is 2π times the Poincaré index. Thus the angle

θ̃(x, f(x)) at some general point x will depend upon the number of times the

path encircles the fixed points. However, the angle θ̃′ will similarly change

with the path in such a way that the difference θ̃′− θ̃ stays fixed. This is the

only quantity that matters for the computation of ρs.

4 Turning Angle

An alternative formulation of the self-rotation number (7) is obtained by

noting that it is the average rate of turning of the vector f(x)− x along the

orbit. Thus define the “turning angle” ϕ : R
2 → S

ϕ(x) = θ̃′(f−1(x), x) − θ̃(f−1(x), x) , (9)

see Fig. 6. We can think of ϕ either as a unit vector field or as an angle, as is

convenient. Using the turning angle, the self-rotation number can be written

ρs(x) = lim
t→∞

1

2πt

t∑
i=1

ϕ(f i(x)) . (10)

We show an example of the unit vector field ϕ for the Hénon map in

Fig. 7. It surprised us that the vector ϕ avoids an interval on S. In fact

it appears that ϕ maps R
2 into some open subset of the circle, I ⊂ S. We

will show that this is true in §5.3 when b > 0. In this case, for any angle

α ∈ S \ I, the function ϕ : R
2 → (α, α + 2π] is continuous, and we say that

the map f avoids the angle α.

Definition 2 (Avoids an Angle). A homeomorphism f of the plane avoids

an angle α if the turning angle ϕ in (9) has a range that does not include α.

When a map avoids an angle, the turning angle ϕ can be obtained using

Φα, (3), where successive iterates form the vectors v1 and v2,

ϕ(x) = Φα(x − f−1(x), f(x) − x) . (11)

The self-rotation number computed using the turning angle inherits the

invariance property of the more general definition:
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Figure 5: The vector field θ(x, f(x)) for the Hénon map (8) with k = 1.0 and
b = 0.5. The curves x2 = −x1 and x2 = x1 + k − x2

1 correspond to the isoclines
where the vectorfield is horizontal or vertical, respectively
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Figure 6: Sketch of the turning angle, defined by (9).

Theorem 2. If a one parameter family of maps of the plane fλ avoids the

angle α(λ) then the self-rotation number ρs(x) computed using (11) is an

invariant under continuation for periodic orbits of fλ.

Proof. A slight change in λ induces a slight change in the periodic orbit. But

the sum of the angles Φα(λ) around the periodic orbit can only change if the

turning angle reaches α(λ). Since this angle is avoided by the map ρs is a

constant. ✷

A necessary condition for ϕ, (9), to avoid an angle is that its restriction to

any circle in phase space R
2 (not containing any fixed points) is a circle map

with degree zero (Recall that a map from S to S has degree k if the image

wraps around the circle k times). Equivalently, if there is a circle for which

ϕ has nonzero degree, the map does not avoid an angle. Since the degree

of a map is a homotopy invariant, any circle in the plane can be arbitrarily

deformed as long as it does not cross fixed points, where ϕ is not continuous.

Since any circle that does not contain fixed points can be deformed to a

point, ϕ necessarily has degree zero on such circles. Similarly, we can deform

a circle that encloses a single fixed point to an arbitrarily small circle, so that

the linearization at the fixed point determines the degree. As we will see in

§4.1, the degree of ϕ on such a circle is zero if f is orientation preserving,

and is ±2 otherwise.

Even when ϕ has degree zero on every circle, f may not avoid an angle.
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Figure 7: The turning angle vector field ϕ(x) for the Hénon map (8) with k = 1
and b = 0.5. The turning vector is vertical on the line and hyperbola shown. Also
shown, at the lower left, is the range of the turning angle.
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For example, ϕ need not be monotone and its range might be the entire

circle. Even when the range on a given circle avoids some angle α0, the

range on other circles may not avoid this particular angle, since the avoided

angle could change with deformation of the circle.

We can compute the global maximum and minimum of ϕ to help deter-

mine whether an angle is avoided. The extrema are attained either at smooth

critical points of ϕ, at the fixed points of f , or at infinity. We will find the

extrema for fixed points in the next subsection. The critical points of ϕ are

given by

Lemma 3. The critical points of ϕ(x) occur when the two conditions

∂w

∂x1

× w = 0 ,
∂w

∂x2

× w = 0 ,

are fulfilled. Here w = (v1 · v2, v1 × v2) and v1 = x − f−1(x), v2 = f(x) − x.

Proof. By (3) and (11), ϕ = arctanα(v1×v2, v1 ·v2). Requiring the derivatives

with respect to both components of x to be zero gives the above result. ✷

4.1 Linear Maps

The turning angle (9) is singular at the fixed points of the map, because

there both v1 and v2 are zero. However, if f is a diffeomorphism, then

the turning angle has a limit on any ray approaching the fixed point. To

calculate this limit it is enough to consider the linearization of the map at

the fixed point. Denote the linear map by the matrix Df(x∗) = L. Since f

is a diffeomorphism, L is nonsingular. For the moment, we also assume that

L has a unique fixed point, which is equivalent to the matrix L − I being

nonsingular.

To compute the turning angle for L, we use the vectors v1 = (I − L−1)x

and v2 = (L − I)x = Lv1. Since the map is linear, the magnitude of x is

unimportant, so we can assume that x = (cos ψ, sin ψ) is a unit vector. Then

v1 can be represented in the polar coordinates (6) to give the angle θ(ψ).

When the fixed point is unique, the image of the unit circle under the map
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I − L−1 is an ellipse.2 In this case, the map from x to v1 is one-to-one and

the orientation of the rotation on the ellipse is determined by the sign of

det(I −L−1); that is, the circle map θ(ψ) has degree sign(det(I −L−1)). We

show an example in Fig. 8. Similarly, the map from ψ to θ′, which is induced

by the nonsingular matrix L−I is a degree sign(det(L−I)) circle map. Now,

since det(L − I) = det(L) det(I − L−1), when L is orientation preserving

these two maps have the same degree. This implies that the turning angle,

ϕ = θ̃′− θ̃, is a degree zero circle map. However, if L is orientation reversing,

then the two maps θ′(ψ) and θ(ψ) have opposite orientations. This implies

that ϕ has degree 2 sign(det(L − I)).

We conclude that it is possible for a linear map to avoid an angle only if

it is orientation preserving. In fact we can show

Lemma 4. Suppose L is an orientation preserving, nonsingular, linear map.

Then L avoids an angle α.

Proof. We first assume that L − I is nonsingular, so that without loss of

generality, we can assume that v1 points in a general direction.

Since the turning angle is the angle between the vectors v1 and Lv1,

it is independent of the magnitude of v1. Therefore, we can write v1 =

(cos θ, sin θ). Whenever L is nonsingular, it maps the circle v1 = (cos θ, sin θ)

one-to-one onto an ellipse. Thus the map from θ̃ to θ̃′ is monotone increasing.

Since θ̃′ = θ̃+ϕ, then dϕ
dθ

> −1. An elementary application of the mean value

theorem then implies that ϕ has range less than 2π. For if the range of ϕ

were at least 2π, then there would be points 0 ≤ θ0, θ1 < 2π for which

ϕ(θ1) − ϕ(θ0) = 2π. Either 0 < θ0 − θ1 < 2π, or 0 < θ0 + 2π − θ1 < 2π. In

either case, since ϕ is periodic, the mean value theorem implies there must

be a point for which dϕ
dθ

< −1.

If L − I is singular, then there are three possibilities. If L is the identity

matrix, every point is fixed and the turning angle is not defined. If L has

2For example, let M ≡ I − L−1 =
(

a b
c d

)
. The image of the unit circle under M is the

ellipse

(c2 + d2)x2 − 2(ac + bd)xy + (a2 + b2)y2 = det(M)2 .

Thus the ellipse has nonzero radii whenever det(M) �= 0.
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a single eigenvalue 1, then there is a line of fixed points along its eigenvec-

tor. For any point not on this line, v1 points in the direction of the second

eigenvector and so does v2, so the turning angle is zero. If L has a double

eigenvalue 1 and is not the identity then it has nontrivial Jordan form. Now

for any point that is not fixed, v1 = v2 is the single eigenvector, so that

ϕ = 0. Note that a small perturbation can discontinuously change the range

of ϕ when L − I is singular.

Therefore in all cases, ϕ has range less than 2π, and L avoids an angle.

✷

Letting L = ( a b
c d ), we can write

ϕ(x) = arctanα(v1 × v2, v1 · v2) ,

v1 × v2 = c cos2 θ + (d − a) cos θ sin θ − b sin2 θ ,

v1 · v2 = a cos2 θ + (b + c) cos θ sin θ + d sin2 θ , (12)

for a suitable choice of α. To determine the actual range of ϕ, we find its

critical points.

Lemma 5. Suppose L = ( a b
c d ) is the matrix of an orientation preserving,

nonsingular, linear map with a unique fixed point. Then the maximum and

minimum values of the turning angle are given by

tan ϕ± =
τ(c − b) ± 2w

4δ − (c − b)2
, w =

√
δ(τ 2 − 4δ + (c − b)2) , (13)

respectively, where τ and δ are the trace and determinant of L.

The critical values are invariant under scaling L, which they should be, be-

cause for a linear map, ϕ is constant on rays emerging from the origin. They

are also invariant under rotations, i.e., the critical values are unchanged by

the similarity transformation RtLR for any rotation matrix R. The extremal

values are not coordinate independent: they do depend on the antisymmetry,

c − b, of L. Finally, w is real whenever L is orientation preserving, as the

factor under the square root can be written δ((a − d)2 + (b + c)2), which is

nonnegative when δ > 0. This also shows that when δ < 0, ϕ has no real

critical points.
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Proof. As before, ϕ is independent of the magnitude of v1, so we can set

v1 = (cos θ, sin θ). Elementary calculations using (12) give the critical points

tan θ± =
ab + cd ∓ w

δ − b2 − d2

providing L is orientation preserving—for then w is real. Note that there are

actually 4 critical points, since if θ is a critical point, so is θ +π. The second

derivative of ϕ at the critical point is ∓2w
δ

, showing that the upper sign is

a maximum and the lower sign a minimum. Substituting the critical points

into the expression for ϕ gives the promised critical values. ✷

Since (13) is an equation only for the tangent of the extrema, one must

choose an appropriate branch to determine the actual range of ϕ. To do

this, first find one point in the range of ϕ; for example, (12) implies that

ϕ((1, 0)) = arctan(c, a). Depending upon the sign of the denominator of

(13), unique branches can be chosen so that ϕ− ≤ ϕ((1, 0)) ≤ ϕ+. For

the example in Fig. 8, a, c > 0, and the denominator is positive, so that

−π
2

< ϕ− < ϕ+ < π
2
.

5 Applications

Here we present some examples of maps that avoid an angle α. In particular,

we show that certain parameterized families of maps avoid a fixed angle.

Once the value of α is known, we can compute self-rotation numbers for

periodic orbits at any parameter value, and we know the rotation number

cannot change. In particular, we know that two period n orbits with different

self-rotation numbers cannot collide. Thus we obtain restrictions on the

bifurcations that can occur.

5.1 Nearly Linear Maps

Since a linear, orientation preserving map with a unique fixed point avoids

some angle α, then any map nearby will avoid the same angle. For example,

consider the diagonal map, L = ( a 0
0 d ), and suppose that 0 < a < d. If a = 1
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or d = 1, then ϕ(x) ≡ 0. Otherwise, we have

v1 × v2 = (d − a) sin(2θ) , v1 · v2 = a + d − (d − a) cos(2θ) .

Note that the dot product is always positive. In fact the turning angle is

always in the interval

|ϕ| < arctan

(
d − a√

ad

)
<

π

2
.

Therefore the angle α = −π is avoided.

Thus, any perturbation that does not twist the vectors too much also will

avoid the angle −π. For example if

f(x) = Lx + εg(x)

and |g(x)| < |x|, then the vectors vi will be changed only by O(ε), and for

small enough ε, the map will still avoid −π.

5.2 Birkhoff Normal Form

The Birkhoff normal form for a map with an elliptic fixed point is

r′ = r , ψ′ = ψ + Ω(r) ,

where (r, ψ) are polar coordinates and Ω is the rotation number. For this

map, the turning angle is precisely Ω(r). If the range of Ω is less than 2π,

then the map avoids an angle, and we can use our formulation to compute

the self-rotation number. For example, suppose that Ω(r) = ω0 + a tanh(r),

then the range of the turning angle is [ω0, ω0 + a), so for any 0 < a < 2π, the

map avoids an angle.

A map that is nearby, e.g.,

r′ = r + εg1(r, ψ) , ψ′ = ψ + Ω(r) + εg2(r, ψ) ,

where |g1| < r, and |g2| < 1, will also avoid an angle if ε is small enough.
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5.3 Hénon Map

Our motivation for developing the turning angle was a detailed study of the

periodic orbits of the Hénon map [5]. Recall that this map is given by (8)

f(x, y) = (y − k + x2,−bx) ,

where we now use (x, y) for the coordinates to avoid excessive subscripting.

Since det Df = b, according to the linear map results, we cannot expect

the Hénon map to avoid any angle when b < 0, since then it is orientation

reversing. However, otherwise, we can show

Theorem 6. The orientation preserving Hénon map (b > 0) avoids the angle

α = −3π/2.

Proof: The turning angle is given by (11), where the two vectors are

v1 = (x, y) − f−1(x, y) and v2 = f(x, y) − (x, y). In order to show that

ϕ �= −3π/2 we could compute the minimum and maximum values of ϕ(x) as

we did for the linear map in Lemma 5 and then show that −3π/2 is not in

the interval between them. This would give the complete range of ϕ(x) that

is avoided, but here we only need to show that ϕ(x) avoids −3π/2. Since

tan ϕ(x) ≡ v1 × v2

v1 · v2

,

we must show that when the vectors are perpendicular the cross product is

negative. Note that when the vectors are perpendicular, v1 · v2 = 0, and

v1 × v2|{v1·v2=0} = ±|v1||v2| , (14)

so we must show that only the − sign occurs. Generically the dot product

will vanish on some set of curves. On these curves the vector ϕ is vertical; we

must show that it points down. According to (14), the cross product cannot

change sign on one of these curves unless one (or both) of the two vectors

vi = 0. If either vanishes, then the point (x, y) is a fixed point, and both

vectors vanish. However, the results of the previous section imply that the

sign of the cross product cannot change if a curve goes smoothly through a

fixed point, because the angle ϕ for a linear map is constant on lines through

the fixed point. Thus for smooth curves, {(x, y) : v1 ·v2 = 0}, we can evaluate
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the cross product at any point on the curve, and if it is negative at the point,

it is negative everywhere on the curve.

Specifically for the Hénon map, the dot product is

v1 · v2 =
1

b2
(y + bx)

[
b(x − x0)

2 − (y − y0)
2 + c

]
,

where x0 = 1−b
2

, y0 = bx0, and c = b
4
(b − 1) [(b − 1)2 + 4k]. Thus the dot

product vanishes on three curves in the plane: the line y = −bx and the

two branches of the hyperbola defined by the equation in the brackets (recall

Fig. 7). These curves cross at the fixed points of the map and each curve

goes to infinity in the plane. It is particularly easy to evaluate the sign of

the cross product near infinity on these curves. The cross product is

v1 × v2 = −1

b
(y + bx)2 −

(
y − x − k + x2

) (
y − x − k +

y2

b2

)
.

It is easy to see that on the line y = −bx, we have

v1 × v2|{y=−bx} = −
(
(1 + b)x + k − x2

)2
,

which is obviously nonpositive, and vanishes only at the fixed points. The

asymptotes of the hyperbola are the lines y = ±
√

bx. On these lines near

infinity, the cross product becomes

v1 × v2|{y=±
√

bx} → −x4

b
, as x → ∞ .

Thus we see that on each of the three curves, v1 × v2 ≤ 0 and so the angle

−3π/2 is avoided. ✷

Choosing α = −3π
2

gives a self-rotation number in the domain (−3
4
, 1

4
].

In fact the predominant rotation for the Hénon map with our convention is

clockwise, and so rotation numbers are negative. We will see in §5.5 that

positive rotation numbers cannot occur for bounded orbits.

We show in Fig. 9 a period 5 orbit for three values of k when b = 1.

This orbit is one of a pair created in a rotational bifurcation of the elliptic

fixed point when k = 7+5
√

5
8

≈ 2.27254, where the multipliers of the elliptic
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Figure 9: The period 5 orbit with symbol sequence (− − − − +)∞ shown for 3
values of k at b = 1. The orbits are not shown to scale: the star should be about
3000 times smaller than the triangle. The labels in the figure indicate the order
in which the motion occurs.

fixed point are e±2πi 2
5 . Since the motion is clockwise, the rotation number

of the orbit should be −2
5
. This is indeed what is obtained for the self-

rotation number, as the orbit has the expected “star” shape, and all of the

turning angles are near −4π/5 for k near the bifurcation value. Near k = 2.5,

however, one vertex of the star moves across a side, though the orbit remains

star-convex. As k → ∞, three of the vertices approach each other, and the

orbit limits to a triangle. Nevertheless, the self-rotation number remains −2
5
,

since none of the turning angles can cross the avoided α. For this orbit the

specific choice α = −3π
2

is not critical, and a naive choice of α = −π to

compute the self-rotation number would give the correct value.

In Fig. 10, we show a period 6 orbit for four values of k when b = 1.

This orbit is created in a saddle-center bifurcation at k ≈ 3.70166. The self-
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Figure 10: Period 6 orbit with symbol sequence (− − + − +−)∞ shown for four
values of k for b = 1. The orbits are not shown to scale. The labels in the figure
indicate the order in which the motion occurs.

rotation number is easily seen to be ρs = −3
6
. Since this orbit has the same

rotation number as the period 2 orbit, it is possible for these orbits to collide;

indeed this happens at k = 15
4
, where the multipliers of the period two orbit

are e±2πi 1
3 . We can then identify this orbit as a tripled period two orbit.

It is interesting that as k passes through 15
4
, several of the turning angles

pass through −π. Thus the choice of α = −3π
2

is important to compute the

correct rotation number for this orbit. As k → ∞, this orbit limits on the

same triangle as the previous orbit.

Generally the self-rotation number can be used to obtain restrictions on

the possible phase space configurations of an orbit, and on the possible bi-

furcations that it can undergo. We will investigate this in §5.5.
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5.4 Generalized Hénon maps

Maps that have the generalized Hénon form [6]

f(x, y) = (y − k + p(x),−bx),

for any function p(x), may also avoid an angle when they are orientation

preserving. The dot and cross products are given by

v1 · v2 =
1

b2
(y + bx) [(1 − b)(y − x − k) + p(x) − bp(−y/b)] ,

v1 × v2 = −1

b
(y + bx)2 − (y − x − k + p(x)) (y − x − k + p(−y/b)) .

To show that the angle −3π/2 is avoided, we must again study the curves

where v1 · v2 = 0. Our considerations of the previous section show that we

need evaluate the cross product only at one point on each curve defined by

the above equation. However, in this case, all of the curves need not extend

to infinity. A simple case arises if one can show that a curve intersects a

fixed point, x∗. For then we can linearize the map at the fixed point, and

the formula for the dot product and cross product become

v1 · v2|Df(x∗) = ξ [p′(x∗)ξ + (1 − b)η] ,

v1 × v2|Df(x∗) = −bξ2 − p′(x∗)ξη − η2 ,

where v1 = (ξ, η). Now the curves of vanishing dot product are the lines

ξ = 0, and η = p′(x∗)
b−1

ξ. Substitution of these values into the cross product

leads to

v1 × v2 =




−η2

−bξ2
(
1 + p′(x)2

(b−1)2

) (15)

which in both cases is manifestly nonpositive.

Another simple situation arises if a curve of vanishing dot product ap-

proaches infinity. Suppose, for example that p is unbounded and grows

faster than linearly. Then if the dot product is to vanish near infinity, either

y = −bx or p(x) → bp(−y/b). For the first case it is easy to see that the

cross product is nonpositive as before; for the second

v1 × v2 → −1

b
p(x)2 < 0 as x, y → ∞ .
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Thus if the curves of vanishing dot product are not compact or intersect a

fixed point, the map avoids −3π/2. We do not have a general demonstration

that these curves have either of these two properties.

5.5 Rotation Number near the Anti-Integrable Limit

The Hénon map has an anti-integrable (AI) limit [7] corresponding to k → ∞.

This is most easily seen by defining a new parameter ε = 1√
k

and the new

variables z = εx, and w = εy, so that the map (8) becomes

(z′, w′) = f(z, w) =

(
1

ε
(z2 − 1) + w,−bz

)
(16)

At the AI limit, ε = 0, there is no longer a dynamical system; instead the

orbits become sequences (zt, wt) = (st,−bst−1), where the symbols st = ±1

change arbitrarily from step to step. We often use just the signs + and − to

denote the symbols st. At the AI limit, the allowed states in the phase space

(z, w) correspond to the corners of the rectangle, (±1,±b). Since the next

value of w is determined by the current z, only certain transitions are per-

mitted, as shown in Fig. 11. The dynamics at the AI limit is conjugate to the

full two-shift on sequences of symbols: {. . . s−1.s0s1 . . .} �→ {. . . s−1s0.s1 . . .},
where the binary point denotes the current position.

It is easy to see that this conjugacy extends away from ε = 0 [7]. In fact

there is a one-to-one correspondence between bounded orbits of the Hénon

map and symbol sequences {. . . st . . .} when |ε|(1+|b|) ≤ 2
√

1 − 2/
√

5. More-

over, zt → st as ε → 0 [8].

In previous work we have shown that continuation from the AI limit (ε =

0) is an effective tool for studying orbits of the Hénon map [8, 5]. In this

section we show how to compute the self-rotation number for orbits at the AI

limit and in so doing, define the self-rotation number for a symbolic sequence.

Since the Hénon map avoids an angle, this rotation number remains invariant

as ε and b > 0 change. In particular, the self-rotation number remains

invariant under continuation away from ε = 0, the basis for the numerical

method presented in [5].

Without loss of generality, we can set b = 1 since the self-rotation number

is independent of positive b. Let vt = f t(z, w) − f t−1(z, w), so that the
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Figure 11: Anti-integrable states for the Hénon map, and the allowed transitions.
The corners of the rectangle are labeled by the symbols st−1.st of zt.

turning angle is ϕt = Φα(vt, vt+1), with α = −3π
2

. Whenever the vectors

vt are nonzero as ε → 0, we can easily compute the rotation number by

using the turning angle at ε = 0. This is the case when the symbol sequence

does not have more than two contiguous − or + symbols. For this case

the turning angle depends only upon four symbols {st−2st−1.stst+1}, since

this is sufficient to compute vt and vt+1. For example, the symbol sequence

{. . . + −. + + . . .} represents the transitions +.− �→ −.+ �→ +.+, so that

the vector v0 corresponds to the diagonal moving from +.− to −.+, and the

vector v1 to the vertical moving from −.+ to +.+:

v0 = (z0, w0) − (z−1, w−1) = (1, 1) − (−1,−1) = (2, 2) ,

v1 = (z1, w1) − (z0, w0) = (1,−1) − (1, 1) = (0,−2) ,

so ϕ0 = −3π
4

. This is precisely the angle seen in Fig. 11. We summarize the

turning angles for each transition in Table 1.

The turning angle cannot be directly evaluated at the AI limit when the

orbit remains at the points +.+ or −.− for more than one iteration. To

compute the turning angle in this case, we assume that 0 < ε � 1. The

sequences {. . . + . + . . .} and {. . . − . − . . .} correspond to points that are

within O(ε) of the fixed points z = −w = ε±
√

1 + ε2, respectively. For such

points, the dynamics are conjugate to the linearization of the map at the
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(st−2st−1)\(stst+1) −− −+ +− ++

−− −π Θn −3π
4

−π
2

−+ −3π
4

−π −π
2

−π
4

+− Θn −π
2

−π −3π
4

++ −π
2

−3π
4

−π
4

0

Table 1: Turning angles for the Hénon map at the AI limit when b = 1

fixed points, which is hyperbolic and hyperbolic with reflection, respectively.

The multipliers are λu = ±2
ε
(1 ± O(ε)) and λs = 1/λu. The corresponding

eigenvectors are u = (±2 −O(ε), ε), and s = (±O(ε), 2), which are basically

horizontal and vertical, respectively. Thus the eigenvectors divide the plane

into the four quadrants.

A symbol sequence {. . . − +n − . . .} stays near the +.+ fixed point for

n − 1 iterations. During this time, the orbit lies very close to a branch of

the invariant hyperbola of the linearized map. Thus the total turning angle

for the n − 1 iterates from {. . . − +. +n−1 − . . .} to {. . . − +n. − . . .} is −π
2

as ε → 0 since the incoming vector v0 = (0,−2) + O(ε), the outgoing vector

vn = (−2, 0) + O(ε), and the intermediate vectors monotonically move a

quarter clockwise rotation along the hyperbola from v0 to vn. A consistent

choice of turning angles at the AI limit is thus to set ϕ(++ .++) = 0, and to

symmetrically allocate half of the total turning to the initial and final points,

thus ϕ(− + . + +) = ϕ(+ + . + −) = −π
4
.

By contrast, the −.− fixed point is reflection hyperbolic so that an orbit

in an ε neighborhood reflects across the fixed point each iteration, undergoing

a turning angle very nearly −π. A sequence . . . + −n + . . ., spends n − 1

iterations near the fixed point with the incoming vector v0 = (0, 2) + O(ε),

and the outgoing vector vn = (2, 0) + O(ε). If n is even the point (z0, w0)

must be in the 2nd quadrant, so that the final vector will lie along the positive

half of the unstable manifold, see Fig. 12. In this case, the vectors v2i turn

monotonically clockwise, so that the ultimate turning angle is (−n+ 1
2
)π. If n

is odd, however, then the initial point is in the 1st quadrant, and the vectors
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v2i turn monotonically counter-clockwise, see Fig. 13. Thus the total turning

angle in this case is (−n − 1
2
)π. It is consistent to set ϕ(− − . − −) = −π

since each iteration at −− corresponds to a half rotation. We symmetrically

add an additional rotation of ±π
4

to the incoming + − . − −, and outgoing

−− . − + depending upon whether n is even or odd:

ϕ(+ − . −n−1 +) = ϕ(+ −n−1 . − +) = Θn ≡ −π + (−1)n π

4
. (17)

For example, the period 3 orbit, {− − +}∞ = {. . . − − + − − + . . .},
corresponds to the sequence of transitions

−− . + − → − + . −− → + − . − +

−3π
4

−3π
4

−π
2

= −2π ,

so that the rotation number is −1
3
. A similar computation for the period 4

orbit, {− − −+}∞, gives

−− . − + → −− . + − → − + . −− → + − . −−
−5π

4
−3π

4
−3π

4
−5π

4
= −4π

,

where we used (17) for the first and last transitions. Here the rotation number

is −2
4

= −1
2

which is consistent with this orbit being born in a period doubling

bifurcation of the period two orbit {+−}∞ which has the same rotation

number.

We list the low period orbits of the Hénon map, their rotation numbers,

and bifurcations in Table 2. Knowledge of the rotation number is not suffi-

cient to predict all bifurcations, however, it does give some restrictions. For

example only 2 period 5 orbits have rotation number −1
5
, so they must be

born together in a bifurcation. When b = 1 this bifurcation is a rotational

bifurcation of the elliptic fixed point; more generally this will be a saddle-

node bifurcation. The situation at period six is more complicated since there

are 5 orbits with rotation number −2
6
. Since this is equivalent to −1

3
, we

suspect that one of the orbits is born by period doubling of a period three

orbit. We observe that this is the orbit {+ −4 +}∞. The next two orbits are

asymmetric, and arise from a pitchfork bifurcation of a symmetric orbit when

b = 1 [5]. The last two ρs = −2
6

orbits collide in a saddle-node bifurcation.
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Figure 12: The orbit
{
+ −6 +−

}∞ for k = 22.7 and b = 1. The full period
9 orbit is shown in the inset. The enlargement shows the region centered at the
{−}∞ fixed point, together with the linear approximations of the manifolds and an
invariant hyperbola. The points fall alternately on two branches of the hyperbola
because the multipliers of the map are negative, illustrating (17).



5 APPLICATIONS 31

-0.6 -0.4 -0.2 0 0.2

-0.2

0

0.2

0.4

0.6

1

2

3

4

5

97

8

6
0

x-x

y-
y

e

e

0
98

7

6

5

Figure 13: The orbit
{
+ −7 +−

}∞ for k = 8.92 and b = 1. The full period 10
orbit is shown in the inset. The enlargement shows the region centered at the
{−}∞ fixed point, together with the linear approximations of the manifolds and
an invariant hyperbola. The points near the fixed point lie on the hyperbola, but
k is not large enough for the approximation to be valid for the two farthest points.
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Orbit ρs Bifurcation Parent k-Value

{+−}∞ -1
2

pd {−}∞ 3

{− + −}∞ -1
3

sn 1

{+ − +}∞ -1
3

sn 1

{+ −−+}∞ -1
4

1/4 {−}∞ 0

{+ − ++}∞ -1
4

1/4 {−}∞ 0

{− + −−}∞ -2
4

pd {+−}∞ 4

{− + + + −}∞ -1
5

1/5 {−}∞ −0.52254249

{+ + − + +}∞ -1
5

1/5 {−}∞ −0.52254249

{− − + −−}∞ -2
5

2/5 {−}∞ 2.27254249

{− + − + −}∞ -2
5

2/5 {−}∞ 2.27254249

{+ − + − +}∞ -2
5

sn 5.5517014

{+ −−− +}∞ -2
5

sn 5.5517014

{− +4 −}∞ -1
6

1/6 {−}∞ −3
4

{+ + −+3}∞ -1
6

1/6 {−}∞ −3
4

{+ −4 +}∞ -2
6

pd {+ − +}∞ 5
4

{+ + − + −−}∞ -2
6

pf {+ −4 +}∞ 3

{− − + − ++}∞ -2
6

pf {+ −4 +}∞ 3

{+ − +3−}∞ -2
6

sn 5.6793695

{− − +3−}∞ -2
6

sn 5.6793695

{− − + − +−}∞ -3
6

sn 3.7016569

{− − +−3}∞ -3
6

sn 3.7016569

Table 2: Self-Rotation numbers for periodic orbits of the Hénon map up to period
6 for any b > 0, and their bifurcations when b = 1. We do not list the fixed points,
since they do not have a fixed self-rotation number. The 3rd column lists the
bifurcation that creates the orbit: “sn” indicates a saddle-node, “pf” a pitchfork,
and “pd” a period doubling. A rotational bifurcation is denoted by m/n, referring
to the multiplier of the elliptic point at the bifurcation. For a discussion of these
bifurcations see [5].
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The effectiveness of the rotation number in pruning possible bifurcations

decreases with period since the number of orbits grows exponentially, while

the number of rotation numbers only grows linearly. We list the number of

orbits with each rotation number up to period 16 in Table 3. Some simple

observations follow from this table. For example, in general there are only

two orbits with self-rotation number − 1
n
, and therefore they must be born

together. For the area-preserving case, this occurs at a rotational bifurcation

of the elliptic fixed point. These orbits have symbol sequences {−+n−1}∞

and {− − +n−2}∞.

Similarly, orbits created in rotational bifurcations from the period two

orbit have self-rotation number − k
2k

. In particular, the pair of orbits cre-

ated in the “1/k” rotational bifurcation of the period two orbit have se-

quences
{
(−−)k−2 −−− +

}∞
and

{
(−−)k−2 − + − +

}∞
. For period six,

since there are only two orbits with rotation number −3
6
, this means that

these orbits must be created together, and in the case b = 1, that they col-

lide with the period two orbit in a tripling bifurcation. For higher periods,

there are more than two orbits with rotation number − k
2k

, and so the pruning

is not complete.

A final observation is that whenever the number of orbits with given

rotation number is odd, at least one of these orbits must be born without a

partner, i.e., as a result of a period doubling bifurcation. For example, one of

the three orbits with self-rotation number −4
8

must be the period doubling

of the orbit with rotation number −2
4
.

6 Conclusions

Since the orientation-preserving Hénon map avoids the angle α = −3π
2

, we

can compute the self-rotation number of any orbit using the turning-angle

(11) with the arctangent chosen to have the range (α, α + 2π). The self-

rotation number can be computed at the anti-integrable limit using the sym-

bol sequence for an orbit. This encoding is equivalent to that for the standard

horseshoe. Since the self-rotation number is preserved upon variation of the

parameters k and b, orbits with different self-rotation numbers can never

coincide, and so they cannot be partners in a bifurcation. This conclusion
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Orbits Self-rotation Number (ρs)

period (n) total # -1/n -2/n -3/n -4/n -5/n -6/n -7/n -8/n

2 1 1

3 2 2

4 3 2 1

5 6 2 4

6 9 2 5 2

7 18 2 8 8

8 30 2 9 16 3

9 56 2 12 26 16

10 99 2 13 40 38 6

11 186 2 16 56 80 32

12 335 2 17 74 137 96 9

13 630 2 20 96 224 224 64

14 1161 2 21 120 332 448 220 18

15 2182 2 24 146 480 806 596 128

16 4080 2 25 176 655 1344 1336 512 30

Table 3: Winding Numbers for periodic orbits of the Hénon map with b > 0. The
total number of periodic orbits is the number for a full 2-shift.
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requires b > 0, thus the restrictions on the allowed bifurcations do not con-

tinue to the one-dimensional limit.

We have shown that any orientation preserving linear map avoids an

angle α, and so nearly linear maps will avoid that angle as well. It is not

clear, however, how general this concept is. For example, numerical evidence

indicates that the standard map (see e.g., [2]) avoids an angle, however, the

proof of this appears non-trivial.

To compute the rotation numbers of orbits born in rotational bifurcations

about elliptic periodic orbits (i.e., islands-around-islands), it would be useful

to know when fn avoids an angle as well. For example, suppose that the

rotation number of a period q0 orbit is p0

q0
= q1m0

q1n0
, where m0 and n0 are

coprime. Then the period q0 orbit may be in the bifurcation tree generated

by a period n0 orbit with rotation number m0

n0
. To determine the rotation

number relative to the period n0 orbit, we could compute the self-rotation

number using the map fn0 , giving p1

q1
for some p1. This process can be

continued until pk and qk are coprime. Ultimately the rotation number would

be expanded in a complete sequence m0

n0
: m1

n1
: . . . : mk

nk
, so that

∏
ni = q0.

Finally, though we have only discussed planar maps in this paper, it

would be nice to generalize the concept of self-rotation number to higher-

dimensional maps. For example, for the class of symplectic maps, the sym-

plectic structure gives special meaning to canonical pairs that may make the

concept of rotation vector meaningful.
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