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Abstract

The di�erent types of energy surfaces are identi�ed for the Kovalevskaya problem of rigid

body dynamics, on the basis of a bifurcation analysis of Poincar�e surfaces of section.

The organization of their foliation by invariant tori is qualitatively described in terms of

Poincar�e-Fomenko stacks. The individual tori are then analysed for sets of independent

closed paths, using a new algorithm based on Arnold's proof of the Liouville theorem.

Once these paths are found, the action integrals can be calculated. Energy surfaces are

constructed in the space of action variables, for six characteristic values of energy. The

data are presented in terms of color graphs that give an intuitive access to this highly

complex integrable system.

to be submitted to: International Journal of Bifurcation and Chaos

1



1. Introduction

Among the integrable systems of classical mechanics, the Kovalevskaya case of rigid body

dynamics has proved to be one of the most fascinating in its combination of mathemat-

ical beauty and physical complexity. Generations of mathematicians have investigated

its numerous special cases, the emphasis gradually shifting from the integration of indi-

vidual trajectories in terms of hyperelliptic functions to a more comprehensive analysis

of its general structure. Starting with the celebrated demonstration of integrability by

Kovalevskaya [1889] and the impressive achievements of K�otter [1893] with regard to

explicit solutions, a steadily increasing body of knowledge about the system has accumu-

lated, particularly in the Russian schools of mathematics and analytical mechanics. The

achievements of the �rst �fty years after Kovalevskaya's original work were summarized

in a memorial collection of papers in 1940 of which Appelrot's contribution [1940] was the

central part. His classi�cation of types of motion opened the way for the modern attempts

to understand the principles of phase space foliation. Kharlamov's bifurcation analysis

of the level sets of �rst integrals [1983] continued Appelrot's work to the point of virtual

completion. Bobenko et al. surveyed the state of a�airs 99 years after Kovalevskaya and

identi�ed the highlights of recent progress in the development of new methods of integra-

tion [Dubrovin et al., 1988] and the construction of Lax pairs [Bobenko et al., 1989] and
[Haine & Horozov, 1987], [Horozov & van Moerbeke, 1989].

Among physicists, the recent revival of interest in classical mechanics relates to their

desire to understand non-integrable systems, and the transition from classical to quantum

mechanics. Perturbation theory and path integrals are the methodological tools used to

leave the realm of integrable classical systems. They both require a thorough understand-

ing of integrable limiting cases, and center around the concepts of action integrals and

winding numbers as the most relevant characteristics of invariant tori, see Berry [1978] and

Gutzwiller [1990] for reviews. They assume energy surfaces to be given in the canonical

form h = H(I) and go on from there, H being the system's Hamiltonian and h the energy

constant, I = (I1; : : : ; In) a set of action variables. For many interesting systems, how-

ever, this knowledge is simply not available. During the active days of Bohr-Sommerfeld

quantum theory, a number of systems were treated in this way, including the free sym-

metric and asymmetric rigid bodies (Schwarzschild [1916], Epstein [1919]). But for the

Kovalevskaya top corresponding results have not been derived.

The present article �lls this gap in terms of graphical representations of energy sur-

faces, based on extensive numerical calculations of action integrals. Two problems had

to be solved in this context. The �rst was to develop a scheme that organizes the sys-

tem's invariant tori for the allowed values (h; l; k) of the �rst integrals energy, angular

momentum, and Kovalevskaya constant, respectively. We bene�tted, of course, from the

work of Appelrot and Kharlamov, but found it necessary to introduce modi�cations in

cases where tori are not uniquely de�ned by the values (h; l; k). We base our bifurcation

scheme on the analysis of critical points in a suitably chosen Poincar�e surface of section.

The second problem was to �nd a complete set of independent closed paths around each
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torus. This could be solved by means of an algorithm that was recently devised by Dullin

and Wittek [1993]. It is based on the constructive part of Arnold's proof for Liouville's

theorem on the existence of action-angle variables [1978]. Integrating along the paths

so determined, we generated data sets of actions for the various regions of continuity of

the energy surfaces. These were then assembled in a kind of puzzle work to obtain the

global pictures. Our energy surfaces, although of much higher complexity, resemble those

calculated earlier [Richter, 1990] for the cases of Lagrange (at low and high energies) and

Euler, using elliptic integrals for explicit expressions of the actions.

The article is organized as follows. In Sec. 2 we present two versions of the equations

of motion of the Kovalevskaya system. One of these uses Euler angles and the canonical

formalism of Hamiltonian mechanics; it provides the context in which physically mean-

ingful actions are de�ned. The second version uses Euler variables and is not canonical

(although a Lie-Poisson structure still holds); all calculations are done in these variables.

Sec. 3 contains the bifurcation analysis of Poincar�e surfaces of section. It leads to a qual-

itative ordering of the system's tori in terms of Fomenko graphs [Fomenko, 1991] and

introduces the concept of Poincar�e-Fomenko stacks as a semi-quantitative representation

of energy surfaces. They are used as a guiding principle to take care of every torus in

Sec. 4 where we �nd the independent paths, compute the action integrals, and present six

pictures of qualitatively di�erent energy surfaces.
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2. Equations of Motion

The equations of motion of a rigid body with a �xed point have been formulated in numer-

ous versions of which there are three major classes. The �rst and perhaps most natural

version uses Euler's angles as coordinates of con�guration space, and corresponding angu-

lar momenta; its advantage is the canonical structure, its disadvantage the cumbersome

appearance of trigonometric functions. The second version starts from Euler's equations

and uses non-canonical variables; this is ideal for analytical and numerical integration,

but unsuitable for a discussion of actions and related properties. The third version em-

ploys Hamilton's quaternions, or Cayley-Klein parameters. This approach was promoted

by Klein and Sommerfeld in their classical work on rigid body dynamics [1910]; it com-

bines canonical structure with computational elegance and might indeed be the method

of choice for the work presented here, were it not for the historical accident that Klein and

Sommerfeld all but ignored the Kovalevskaya case, as a result of which almost all work

on the Kovalevskaya top has ignored the Cayley-Klein variables. We shall conform with

that tradition, and concentrate on Euler's variables for matters of visualization, and on

Euler's equations for matters of computation. It will be important to have a clear view

of the relationship between these two approaches.

2.1. Euler angles '; #;  and Euler variables p; q; r; 1; 2; 3.

Euler's angles are a convenient choice of coordinates for the con�guration space SO(3) of

the rigid body with a �xed point. They describe the position of a body-�xed (1; 2; 3)-frame

relative to an (x; y; z)-frame �xed in space, see Fig. 1 where we adopt the conventions

of Landau, Lifshitz [1984], Goldstein [1950], and others. We assume the z-axis to point

upward in the constant gravitational �eld, and the (1; 2; 3)-axes to coincide with the

three major axes of inertia. A given vector ~v can then be expressed in the two frames;

its components (v1; v2; v3) and (vx; vy; vz) are related by the familiar orthogonal matrix

D, the three-dimensional representation of SO(3):

0
BBB@
v1

v2

v3

1
CCCA = D

0
BBB@
vx

vy

vz

1
CCCA (1)

where

D =

0
BBB@

cos' cos � sin' sin cos# sin' cos + cos' sin cos# sin sin#

� cos' sin � sin' cos cos# � sin' sin + cos' cos cos# cos sin#

sin' sin# � cos' sin# cos#

1
CCCA (2)

This transformation law characterizes physical vectors such as position ~r , angular velocity
~
 , or angular momentum ~L . In contrast, the triples �T := ('; #;  ) of Euler angles and
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L
T := (L'; L#; L ) of canonical angular momenta do not represent physical vectors.

From the orthogonality relation DDT = 1 we have D _D
T

+ _DDT = 0 which de�nes the

antisymmetric tensor 
 := D _D
T

:


 =

0
BBB@

0 �
3 
2


3 0 �
1

�
2 
1 0

1
CCCA ; (3)

its components form an axial vector ~
 in moving frame representation:

0
BBB@

1


2


3

1
CCCA �

0
BBB@
p

q

r

1
CCCA =

0
BBB@
sin sin# cos 0

cos sin# � sin 0

cos# 0 1

1
CCCA
0
BBB@

_'

_#

_ 

1
CCCA =: � _� : (4)

The notation (p; q; r) for the moving frame components of ~
 has been customary in most

of the mathematical literature on rigid body dynamics; we shall adopt this convention.

Taking the time derivative of Eq. (1), we �nd for any vector ~v the kinematic relation

D

0
BBB@

_vx

_vy

_vz

1
CCCA =

0
BBB@

_v1

_v2

_v3

1
CCCA + 


0
BBB@
v1

v2

v3

1
CCCA : (5)

This shows that velocities do not transform as ordinary vectors; there is an additional

term due to the relative motion of the two frames. Its interpretation identi�es ~
 as the

(time dependent) vector of the body's angular velocity.

The components of ~
 are not the total derivatives of any angles; this makes them

unsuitable as objects in a canonical formalism. Nevertheless they play a crucial role in

the derivation of the Lagrangian and Hamiltonian functions, and turn out to be at the

heart of the Euler equations.

The Euler equations are formulated in terms of the (1; 2; 3)-components of ~
 and ~ ,

the unit vector in z-direction of the �xed frame, (x; y; z) = (0; 0; 1). Its components in

the moving frame, according to Eq. (1), are

0
BBB@
1

2

3

1
CCCA =

0
BBB@
sin sin#

cos sin#

cos#

1
CCCA : (6)

As this vector does not move in the �xed frame, the kinematic relation (5) becomes
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0
BBB@

_1

_2

_3

1
CCCA = �


0
BBB@
1

2

3

1
CCCA =

0
BBB@
r2 � q3

p3 � r1

q1 � p2

1
CCCA : (7)

These equations are part of the set of Euler's equations for the variables p; q; r; 1; 2; 3.

The variables (1; 2; 3) serve to avoid the computationally awkward trigonometric

functions of Euler angles. The matrix � and its inverse ��1 can readily be expressed in

these variables; introducing the notation


?

:=
q
21 + 22 = sin# ; (8)

we have

� =

0
BBB@
1 2=? 0

2 �1=? 0

3 0 1

1
CCCA and 

?

2��1 =

0
BBB@

1 2 0


?
2 �

?
1 0

�13 �23 1

1
CCCA : (9)

Another important vector is the body's center of mass ~c, �xed in the moving frame.

Its components will be denoted by (c1; c2; c3).

2.2. The canonical equations of motion

As we assumed the (1; 2; 3)-axes to be aligned along the major axes of inertia, the kinetic

energy T of the rigid body is a diagonal quadratic form in the components of ~
 . Let �1,

�2, �3 be the three elements of the diagonal tensor of inertia �.

T =
1

2
~

T

� ~
 � 1

2
�1


2

1
+

1

2
�2


2

2
+

1

2
�3


2

3
: (10)

The potential energy depends on the z-component of the center of mass, cz = ~c � ~ :

V = Mg~c � ~ + V0 ; (11)

where M is the body's mass, g the gravitational �eld, and V0 a constant such that the

potential minimum is at V = 0. If we measure lengths in units of c = j~c j, energies in
units of Mgc, time in units of

q
�=Mgc where � is a standard moment of inertia, the

only parameters left are the relative moments of inertia �i=� which will be denoted by

�i again, and the components of the unit vector ~c pointing to the center of mass. From

T and V we obtain the system's Lagrangian L if we interpret ~
 and ~ as functions of

('; #;  ) and ( _'; _#; _ ), using Eqs. (4) and (6):

L = L(�; _�) =
1

2
_�TT(�) _� � (1 + ~c � ~ (�)) : (12)
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The matrix T(�) is

T = �T�� =

0
BBB@
�12 �B cos2 #+A cos 2 sin2 # �A sin 2 sin# �3 cos#

�A sin 2 sin# �12 �A cos 2 0

�3 cos# 0 �3

1
CCCA ; (13)

where the abbreviations

�12 :=
�1 +�2

2
; A :=

�2 � �1

2
; B := �12 ��3 (14)

have been used.

The canonical angular momenta L are obtained as

L �

0
BBB@
L'

L#

L 

1
CCCA = T

0
BBB@

_'

_#

_ 

1
CCCA ; (15)

and the Hamiltonian reads

H = 1

2
L
TT�1L + V

=
((L' � L cos#) sin + L# sin# cos )

2

2�1 sin
2 #

+
((L' � L cos#) cos � L# sin# sin )2

2�2 sin
2 #

+
L2

 

2�3

+ 1 + ~c � ~ (�) :

(16)

The canonical equations of motion are then given as

0
@ _�

_
L

1
A =

0
@ 0 1

�1 0

1
A
0
@@H=@�
@H=@L

1
A =: MrH : (17)

It is evident that the explicit form of these equations will be quite cumbersome and

inconvenient for numerical or analytical integration.

2.3. The Euler equations

The simple expression of energies T and V in terms of the Euler variables suggests to

use the components i of ~ and li of the vector ~l = �~
 as independent variables. The

transformation (�;L) 7! (~ ;~l ) can be carried out by means of Eqs. (4) and (6). It is

non-canonical, but preserves the Lie-Poisson structure of the equations, cf. [Holmes &

Marsden, 1982]. De�ning the Jacobian J as
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J �

0
@@~ =@� @~ =@L

@~l =@� @~l =@L

1
A �

0
@J� 0

Jl� JlL

1
A ; (18)

the canonical equations (17) transform into

0
@ _~

_~l

1
A = JMJT

0
@@H=@~
@H=@~l

1
A =

0
@ 0 �

��T �

1
A
0
@@H=@~
@H=@~l

1
A =: MErEH : (19)

The partial Jacobians J�, Jl�, JlL are


?
J� =

0
BBB@

0 13 2?

0 23 �1?
0 �

?

2 0

1
CCCA ; 

?

2JlL =

0
BBB@
1 2? �13
2 �1? �23
0 0 

?

2

1
CCCA ; (20)


?

2Jl� =

0
BBBBBBB@

0 (L � L' cos#)
1

?

l2?
2

0 (L � L' cos#)
2


?

�l1?2

0 0 0

1
CCCCCCCA
: (21)

It is now straightforward to compute the antisymmetric matrices � and �:

� = ��T =

0
BBB@

0 �3 2

3 0 �1
�2 1 0

1
CCCA ; � = ��T =

0
BBB@

0 �l3 l2

l3 0 �l1
�l2 l1 0

1
CCCA : (22)

The equations of motion (19) are the well known Euler equations

0
BBB@

_1

_2

_3

1
CCCA =

0
BBB@
r2 � q3

p3 � r1

q1 � p2

1
CCCA (23)

and 0
BBB@
_l1
_l2
_l3

1
CCCA =

0
BBB@
c32 � c23

c13 � c31

c21 � c12

1
CCCA +

0
BBB@
rl2 � ql3

pl3 � rl1

ql1 � pl2

1
CCCA : (24)

With (l1; l2; l3) = (�1p;�2q;�3r), the last set can be written as
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0
BBB@
�1 _p

�2 _q

�3 _r

1
CCCA =

0
BBB@
c32 � c23

c13 � c31

c21 � c12

1
CCCA +

0
BBB@
(�2 ��3)qr

(�3 ��1)rp

(�1 ��2)pq

1
CCCA : (25)

The Euler equations (23) and (25) will be used for purposes of integration, whereas the

canonical equations (17) form the basis of our description of phase space. The relation

between the two formulations of the rigid body dynamics is expressed in terms of the

Eqs. (17) - (19).

The transformation (�;L) 7! (~ ;~l ) is not invertible, as is obvious from Eqs. (20) and
(21). The cyclic variable ' is ignored in the transformation; thus it cannot be recovered
by inverse transformation. Of course, we can go back to # and  by inverting Eq. (6),

and to the canonical momenta L = �T~l with � as given by Eq. (9):

L' = ~ �~l ; (26)

L# = (l12 � l21)=? ; (27)

L = l3 : (28)

In order to �nd the angle ' at a given time, we have to integrate the '-part of the
canonical equations (17)

_' =
1

�1

1l1


?

2
+

1

�2

2l2


?

2
=

1p+ 2q


?

2
: (29)

For completeness, we give the other two components of _� = ��1��1~l as well:

_# =
1

�1

2l1


?

�
1

�2

1l2


?

=
2p� 1q


?

; (30)

_ = r � 3 _' : (31)

The matrix ME de�nes the Lie-Poisson structure of the Euler equations. Just as the

Poisson bracket of the canonical formalism is de�ned by

fF;Gg = rF TMrG (32)

with r � (@=@�; @=@L), the matrix ME de�nes a Poisson bracket

fF;GgE = rEF
TMErEG (33)

with rE � (@=@~ ; @=@~l ), in terms of which the time evolution of any function F =

F (~ ;~l ) is given as
dF

dt
= fF;HgE : (34)

It is easy to check from Eqs. (23) and (24) that the values of energy, h = H, angular
momentum l = L' = ~ � ~l , and of ~ � ~ are general constants of the motion. One more

constant is needed to ensure integrability.
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2.4. The Kovalevskaya case

Up to this point the description applies to any rigid body. We are now going to specify

parameters to the Kovalevskaya case [Kowalewski, 1889], [Golubev, 1953]. Its de�ning

feature is that two of the moments of inertia be equal and twice as large as the third;

the center of gravity must lie in the plane of the two equal moments of inertia. This

leaves a number of formal choices which, of course, are physically equivalent. Considering

the matrix T in Eq. (13), the simplest formulae { without any loss of generality { are

obviously obtained with the traditional choice

�1 = �2 = 2 ; �3 = 1 ; (c1; c2; c3) = (�1; 0; 0) : (35)

This means that �3 is chosen as the standard moment of inertia, and the potential assumes

its minimum for (#;  ) = (�=2; �=2). The parameters in T take on the values

�12 = 2 ; A = 0 ; B = 1 ; (36)

and the Hamiltonian is

H =
1

4
l21 +

1

4
l22 +

1

2
l23 + 1� 1 =

1

2
L
TT�1L + 1� sin sin# (37)

with

T�1 =
1

2 sin2 #

0
BBB@

1 0 � cos#

0 sin2 # 0

� cos# 0 1 + sin2 #

1
CCCA : (38)

In explicit terms we have

H =
1

4 sin2 #
(L' � L cos#)

2 +
1

4
L2

# +
1

2
L2

 + 1� sin sin# : (39)

The Euler equations of motion are (23) and

0
BBB@
2 _p

2 _q

_r

1
CCCA =

0
BBB@

0

�3
2

1
CCCA +

0
BBB@

qr

�rp

0

1
CCCA : (40)

The integrability of this system was demonstrated by S. Kovalevskaya in 1889 [1889].

It derives from the existence of four independent integrals (plus the fact that time t does

not enter the equations explicitly):

energy: h = p2 + q2 + 1

2
r2 + 1� 1 (41)
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angular momentum: l = 2p1 + 2q2 + r3 (42)

unity: 1 = 2
1
+ 2

2
+ 2

3 (43)

Kovalevskaya constant: k2 = (p2 � q2 + 1)
2 + (2pq + 2)

2
(44)

To check the constancy of these four functions F of ~ and ~l , one uses Eq. (34) and shows

that the gradients rEF are orthogonal to

MErEH =

0
BBBBBBBBBBB@

r2 � q3
p3 � r1

q1 � p2

qr

�3 � rp

2

1
CCCCCCCCCCCA

: (45)

We note that the system is not symmetric under time reversal unless l = 0. By time

reversal we mean the transformation

T : ('; #;  ; L'; L#; L ; t) 7! ('; #;  ;�L';�L#;�L ;�t)

(1; 2; 3; p; q; r; t) 7! (1; 2; 3;�p;�q;�r;�t) ;
(46)

it leaves h and k2 constant but changes the sign of l. Of course, this behavior allows us

to derive the results for l < 0 from those for l > 0. Therefore we shall assume l � 0

throughout. There are, however, two symmetries S2 and S3 closely connected to time

reversal. The �rst reverses the signs of ' and  together with time:

S2 : ('; #;  ; L'; L#; L ; t) 7! (� � '; #; � �  ;L';�L#; L ;�t)

(1; 2; 3; p; q; r; t) 7! (1;�2; 3; p;�q; r;�t) :
(47)

It is easy to see that this transformation leaves all constants of motion invariant; much

less obvious is the observation that this symmetry is also respected by each individual

orbit. The symmetry S3, on the other hand, reverses the signs of ' and # together with

time:

S3 : ('; #;  ; L'; L#; L ; t) 7! (�'; � � #;  ; L'; L#;�L ;�t)

(1; 2; 3; p; q; r; t) 7! (1; 2;�3; p; q;�r;�t) :
(48)

This again leaves the constants of motion invariant, but we shall �nd individual orbits to

break this symmetry. In such cases the system's symmetry is restored by the occurrance
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of these orbits in pairs related through S3.

As a consequence of the existence of the three constants of motion h, l, and k, the

(�;L){phase space is foliated by 3-tori which can be labelled { although not necessarily

uniquely! { by the values of energy, angular momentum, and Kovalevskaya constant. The

aim of the present work is to �nd, for each torus, the transformation (h; l; k) 7! (I1; I2; I3)

to action variables Ii,

Ii :=
1

2�

I
Ci

L � d� ; (49)

where Ci (i = 1; 2; 3) are three topologically di�erent closed paths around the given torus.

The main problem turns out to be the identi�cation of these paths. As the ('; L')-motion

separates from the rest of the dynamics, the problem reduces to analyzing the 2-tori in

the (#;  ; L#; L )-part of phase space, with l = L' taken as a parameter. This task is

complicated by the fact that there are eight di�erent types of energy surfaces, depending

on the value of h. Before we can turn to calculating the actions, we need to identify this

structure of parameter space.
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3. The Phase Diagram of Energy Surfaces of the

Kovalevskaya Top

M. P. Kharlamov [1983] computed the (h; l; k)-phase diagram of the Kovalevskaya top by

analyzing the critical points of the map from (~ ;~l )-space into the four integrals (41) {

(44). We propose here to achieve the same goal by considering the dominant periodic

orbits of appropriate Poincar�e sections. This method not only reproduces the bifurcation

results but gives direct insight into the types of orbits that exist in each domain of the

phase diagram. It suggests a slight change in the classi�cation of types in cases where

di�erent tori have the same values of (h; l; k). We use it to locate paths through phase

space that are guaranteed to cross every torus just once. As this is one of the most di�cult

pieces in the puzzle of generating a complete set of actions, we recommend the method

as generally useful in the analysis of integrable systems.

3.1. A comprehensive Poincar�e section

In order to de�ne and analyze a suitable Poincar�e section, we introduce the Kovalevskaya

variables xi, yi, and �i (i = 1; 2):

x1 = p + iq x2 = p � iq

y1 = 1 + i2 y2 = 1 � i2

�1 = x2
1

+ y1 �2 = x2
2

+ y2

(50)

It is convenient to express the four integrals in terms of these variables, and to eliminate

r and 3 with the help of Eqs.(42) and (43). This transforms the energy equation (41)

into

AC � B2 +R(x2)�1 +R(x1)�2 + k2(x1 � x2)
2 = 0 ; (51)

and the Kovalevskaya constant (44) into

k2 = �1�2 ; (52)

where we follow the traditional notation:

A = 2(h � 1)� (x1 + x2)
2

B = l + x1x2(x1 + x2)

C = 1� k2 � x2
1
x2
2

R(xi) = Ax2
i
+ 2Bxi + C = 1� k2 + 2lxi + 2(h� 1)x2

i
� x4

i
:

(53)

Eq. (51) de�nes the 3-D energy surface in the 4-D space of variables (x1; x2; y1; y2).

The additional Eq. (52) characterizes the invariant 2-D tori that foliate the energy surface.
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We now add the condition that de�nes our Poincar�e surface of section:

2 = 0 and _2 � 0 : (54)

In terms of Euler angles, this has the two components (cf. Eq. (6))

8>>><
>>>:
 =

�

2
and _ � 0

 =
3�

2
and _ � 0 :

(55)

This condition is suggested by the observation that it can be met for all values of the

energy h, since the potential minimum occurs at  = �=2. It is not easy to prove that

every orbit (up to symmetry transformation S3) has an intersection with this Poincar�e

surface; we take it as a consequence of the agreement between our bifurcation diagram

and Kharlamov's. Note that the condition (54) or (55) is invariant under the symmetry

transformation S2 (47) whereas S3 (48) transforms the condition _2 � 0 into _2 � 0,

and vice versa. This can be used to obtain points in our Poincar�e section from every

intersection 2 = 0: if _2 < 0, apply S3 to the phase space data.

Condition (54) de�nes a 2-D surface in the 3-D energy surface. As usual, we consider its

projection onto a plane of conjugate variables, in order to have an area preserving Poincar�e

map. A convenient choice is the (#; L#)-plane, as sin# = 1, and L# = �l2 = �2q in

the Poincar�e surface of section. Because of the two components (55) this projection is 1:2

and must be unfolded. We achieve this by letting # vary, formally, from ��=2 to 3�=2,

i. e. we take # = arcsin 1 if 3 � 0, and # = � � arcsin 1 if 3 � 0. The resulting 1:1

projection is continuous at # = 0 and # = � because of the symmetry S2, which for the

Poincar�e surface of section reduces to its invariance under (#; L#) 7! (#;�L#).
This projection of the Poincar�e surface of section onto the (#; L#)-plane (or equiva-

lently, the (1; q)-plane) will be called P in the following. Remember that P depends on

the values of h and l.

With 2 = 0 we have y1 = y2 =: y = 1, so that Eq. (51) reduces to

F(p; q; 1) := AC � B2+x21R(x2)+x
2

2R(x1)+y(R(x1)+R(x2))+k
2(x1�x2)2 = 0 ; (56)

and and (52) to

k2 = x2
1
x2
2
+ y(x2

1
+ x2

2
) + y2 : (57)

The lines that Eq. (57) de�nes in P are the projections of the intersections of invariant

tori with the Poincar�e surface of section.

The boundary @P of P is de�ned by _2 = 0 which implies p3 = r1 by Eq. (23).

Using Eqs. (41)-(43) it is straightforward to express this as
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@P : 2(h � 1 + 1 � q2)(1 + 21)� l
2 = 0 : (58)

The symmetry with respect to q ! �q, or L# ! �L# is obvious, and the symmetry of

1 = � sin# (at 2 = 0) with respect to # = �=2 implies that @P has a vertical symmetry

axis as well. This is not true for the interior of P except at l = 0 where the system is

symmetric under time reversal (cf. Fig. 3K and L).

The topology of P depends on the values of h and l. It can be an empty set, a disk,

an annulus, or a disconnected set of two or three disks. The transitions are governed by

three conditions on the q = 0 axis. The �rst requires that the point 1 = 1 be on @P .

This implies

h = l2=4 : (59)

If this condition is met, P reduces to a point; the rigid body performs a pure rotation

about the vertical axis, its center of mass resting in the stable equilibrium position. At

given l, no motion is possible with lower energy. The second transition occurs when

@P reaches the point (1; q) = (�1; 0). This happens when

h = 2 + l2=4 : (60)

Again, the rigid body rotates about its vertical axis, but with the center of mass in

the unstable equilibrium position. At given l and energy lower than (60), the potential

maximum cannot be reached. As long as P is connected, the condition discriminates

between disk and annulus topology.

The third condition governs the connectedness of P which depends on the number of

zeroes of the polynomial (58) on the line q = 0, in the physical range 2
1
� 1. This number

changes when the discriminant � of the polynomial is zero,

� �
27

16
l4 �

1

2
(h� 1)(9 + (h� 1)2)l2 + (1 + (h� 1)2)2 = 0 ; (61)

the location of the corresponding double zeroes is

�1 = �
1

3
(h� 1)�

1

3

p
h2 � 2h� 2 : (62)

The results of an elementary analysis are summarized in Fig. 4T. The zeroes of � de�ne

the line with a cusp, the other two lines corresponds to Eqs. (59) and (60). The bifurcation

scheme of the topology of P is part of Appelrot's more detailed classi�cation as given in

Fig. 5. With reference to the notation of Fig. 5 for identi�cation of regions in the (h; l2)-

plane, the following holds: P is a disk in region 1d which comprises A, B, C, and J. It is

an annulus in region a of which D, E, and H are parts. The region 2d where the annulus

is disrupted into two disks consists of parts F and G, and in the tiny region 3d where

we have three disks coincides with the Appelrot region I. Parameters on the line � = 0

allow for a particularly simple type of motion, if initial conditions are chosen at the point

(1; q) = (�
1
; 0): all Euler variables are constant in time! The only motion left is in ' and
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 which according to Eqs. (29) and (31) change as

_' =
l

1 + � 2
1

; _ = r � 3 _' : (63)

This motion is reminiscent of a merry-go-round. It is stable along the line separating

regions G and H, or I and J; (�
1
; 0) is then a point where two disks are about to break

apart. The motion is unstable along the line separating regions B and I; (�
1
; 0) is then

a point where a new disk appears out of nothing, together with a tangent bifurcation of

critical orbits. The unstable partner of these orbits is the merry-go-round motion.

An example of a Poincar�e section with h = 2:2 and l = 1:259 is given in Fig. 2. It

shows a collection of orbits with k-values in the range 0 � k � 2:339. The line # = �=2

is the vertical symmetry axis of the boundary, but clearly not of the interior of P . The

angle # extends approximately from ��=4 to 5�=4; the potential maximum at # = 3�=2

is not accessible, and the topology of P is that of a disk. The lines # = 0 and # = � are

always lines of constant k, see Sec. 3.2.2; with k = h � 1 � l2=2 from Eq. (80) we have

k = 0:408.

There are �ve elliptic and three hyperbolic critical points, plus four boundary points

where the separatrix is tangent to the surface of section (see Sec. 3.2.2). This arrangement

of critical points varies with parameters h and l; we shall identify 10 di�erent types. A

thorough analysis of critical orbits was �rst given by Appelrot [1940] who divided them

into four classes. Class I orbits have k = 0 and are marked here by full circles; they are

always elliptic. The two points on the horizontal axis belong to the same orbit of period 2;

the two o�-axis centers belong to another such orbit. The empty circle marks an elliptic

orbit of class IV; it has the maximum value of the Kovalevskaya constant, k = 2:339. The

squares mark points of class III, three hyperbolic orbits (full squares) and four boundary

points (empty squares). The three saddles and the boundary points are connected by a

separatrix, of which the lines # = 0 or � are a part. There are no critical orbits of class

II at the given parameter choice (h; l) = (2:2; 1:259). The foliation of P by intersections

of invariant tori is indicated by a few examples. It is organized by the system of critical

orbits and the associated separatrices. Fig. 2 contains two segments of horizontal lines

that connect the critical points of minimum and maximum k so as to intersect every torus

once (except for the tori around the o�-axis centers). These segments can be viewed as

the backbone of the Poincar�e surface of section; they will be important in the discussion

of Fomenko graphs (Sec. 3.3) and for the computation of action integrals.

The series of Figs. 3 gives a survey on the ten di�erent types of Poincar�e surfaces of

section. A color code is used to identify invariant tori (equal color means equal k) and

regions between separatrices. Within a region of given color, the gradation from dark

to light follows increasing values of k. The �ve main colors red, green, yellow, blue, and

purple characterize connected components of topologically equivalent tori in (h; l; k)-space.

The orange region in Fig. 3C is connected to the red region in full (h; k; l)-space, but not

at given energy h. Similarly, the turquois regions in Figs. 3I and J have a connection to

the green region, but at �xed h there is a separatrix between them.
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Our next goal is to present the scheme of bifurcations that organizes these pictures.

3.2. The di�erent types of Poincar�e sections

Fig. (2) can be viewed as a contour diagram with lines of constant values of k2. Its

structure is determined by the arrangement of critical points in P : minima and maxima

representing elliptic periodic orbits, and saddle points as hyperbolic centers connected to

separatrices. Starting from Eq. (56), we can express p as a function of q and 1, and insert

this into Eq. (57) to obtain k2 as a function of (q; 1) or (#; L#). The critical points are

then de�ned by

@k2

@q
= 0 and

@k2

@1
= 0 : (64)

It is straightforward though lengthy to compute and distinguish all possible cases. We

sketch the main steps and support the results by a set of graphs. Our results reproduce the

classi�cation of Appelrot [1940] and Kharlamov [1983], and in addition provide formulae

for the location of critical tori in P .

We start with the �rst requirement in (64). With

dk2 = (�1 + �2)d1 + 2(x1�2 + x2�1)dp+ 2i(x1�2 � x2�1)dq (65)

from Eq. (57), and

@p

@q

����
1

= �
@F
@q

�
@F
@p

; (66)

we �nd from Eq. (56) that @k2=@q contains a factor q. This suggests to look for critical

points by solving the second Eq. (64) on the symmetry line q = 0. It turns out that most

critical points are indeed obtained in this way. Some others are related to them through

the symmetry operation S3; the rest will be calculated in Sec. 3.2.2.

With q = 0 we have x1 = x2 =: x = p and �1 = �2 =: �. This implies

@k2

@1

����
q=0

= 2�

 
1 + 2x

@p

@1

����
q=0

!
!
= 0 : (67)

Depending on which factor is taken to be zero, we get di�erent classes of critical orbits.

In Appelrot's notation, condition � = 0 de�nes class I whereas 1+2x@p=@1jq=0 = 0 leads

to three separate classes II-IV.

Appelrot's classi�cation scheme may appear somewhat arti�cial from a modern point

of view; it emphasizes the algebra from which the location of bifurcation points is derived

rather than the aspect of their unfolding. Nevertheless it serves its purpose well to identify

the order in the bewildering complexity of this integrable system.
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3.2.1. Appelrot class I

The �rst class of critical orbits obeys � = 0 and therefore

k2 = 0 : (68)

This has been termed Appelrot class I, or Delauney class [Kharlamov, 1983]. It char-

acterizes tori with the smallest possible value of the Kovalevskaya constant. In order to

locate the corresponding critical points in P we insert � = 0 and k = 0 in Eq. (56) to �nd

AC � B2 = 0 or

2(h� 1)(1 � p4)� 4p2 � l2 � 4lp3 = 0 : (69)

This fourth order polynomial for p can be turned into a polynomial for 1 with 1 = �p2:

(2(h � 1)(1� 21) + 41 � l2)2 + 16l231 = 0 : (70)

We thus have an explicit formula for the critical points with k2 = 0.

The polynomial (70) may have 0, 2, or 4 roots depending on the values of h and l.

These cases are separated by the zeroes of the discriminant of which there are two types:

h� 1�
1

2
l2 = 0 and � = 0 (71)

where � is the discriminant (61) that appeared already in the topological bifurcations.

The corresponding lines in the (h; l2)-plane are shown in Fig. 4I. Outside the cone h �
1 + l2=2 there are no roots of (70), while there are 2 or 4 roots inside. The line � = 0

circumscribes a small region with four roots of Appelrot class I. It has a cusp at (h; l2) =

(1 +
p
3; 16=3

p
3) and joins the cone at (h; l2) = (3; 4); for larger l2 the corresponding

roots of (70) are in the unphysical range 2
1
> 1.

We see that orbits of type I occur at energies h no lower than 1. They are necessarily

stable because k2 is at its minimum value 0. As to their symmetry, we observe graphically

that they are not invariant under S3. The two critical points in the major cone in Fig. 4I

belong in fact to the same orbit of period 2; the image of this orbit under S3 is a period

2 orbit with intersections outside the #-axis. (The notation 2+2 in Fig. 4I indicates 2

on-axis and 2 o�-axis points.) These two orbits and their neighborhoods are shown in

green color in the series of Figs. 3. The two additional critical points in the small upper

right part of Fig. 4I are two distinct orbits of period 1; they are mirror images of each

other under S3 and have no o�-axis counterparts. (Therefore the total number of critical

points of this class is 4+2.) In Figs. 3G-J they are the centers of the purple regions.

3.2.2. Appelrot classes II and III

Eq. (67) can also be ful�lled by 1 + 2x@p=@1jq=0 = 0. Taking the di�erential of F , see
Eq. (56), this is equivalent to
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@F
@p

����
q=0

= 2x
@F
@1

����
q=0

: (72)

The condition is most conveniently evaluated by reintroducing the variables r and 3
which leads to the factorization

(r1 � 2p3)(pr + 3) = 0 : (73)

The two factors de�ne classes II/III and IV respectively. We begin with

r1 � 2p3 = 0 : (74)

which leads to Appelrot's classes II and III. Eliminating 3, r, and p by means of Eqs. (41)

- (43) we get the following polynomial in 1:

(1� 21)(h� 1�
1

2
l2 + 1 + l221) = 0 : (75)

The possibility 2
1
= 1 implies 3 = 0 and by Eq. (74) r = 0. This holds only in the special

cases where the 1-axis is aligned along the z-axis, and the top performs a pure rotation

{ the cases (59) and (60) discussed in connection with the topological bifurcations of P .

The corresponding values of h and k are

1 = 1 : h =
1

4
l2 k = 1 + h ;

1 = �1 : h = 2 +
1

4
l2 k =

8>><
>>:
h� 3 (h � 1 + l2=2)

3� h (h � 1 + l2=2)

:
(76)

The second factor in Eq. (75) describes the critical points if r 6= 0:

h� 1�
1

2
l2 + 1 + l22

1
= 0 : (77)

The corresponding values of k are

k =

8>><
>>:

1� h+ 1

2
l2 (h � 1 + l2=2) class II

h� 1� 1

2
l2 (h � 1 + l2=2) class III

(78)

The distinction made in Eqs. (76) and (78) de�nes the Appelrot classes II and III.

Eq. (77) de�nes 0, 1, or 2 critical points. Their bifurcation scheme in the (h; l2)-

diagram is governed by the lines de�ned in (76) { where points may be entering or leaving

the physical range 2
1
� 1 { and by the discriminant of the polynomial in Eq. (77):
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2� 2(h � 1)l2 + l4 = 0 : (79)

This gives the hyperbola shown in Fig. 4II/III; it touches the line (60) in the point

(h; l2) = (2:5; 2).

The distinction of Appelrot classes II and III refers to their stability. Orbits of class

II are elliptic, those of class III are hyperbolic. The change of stability occurs along the

line h = 1 + l2=2, i. e. in connection with the appearance of orbits of class I. Fig. 4II/III

contains the relevant information; see also Fig. 5 for a combined picture.

There is just one orbit of class II/III in the energy range l2=4 � h � 2 + l2=4. It has

period 1 and possesses both symmetries S2 and S3. In region A of Fig. 5, it has the lowest

possible value of k. A typical Poincar�e section is shown in Fig. 3A. The critical point of

class II marks the dark center near the right boundary. When the parameters (h; l2) cross

over into region B, the lowest k belong to class I (k = 0), and the class II orbit moves to

the neighborhood of the left boundary where it becomes class III. In Fig. 3B it is the left

saddle point. The scenario is more involved if h > 3. Before class II turns into class III

there is a bifurcation from 1 to 2 orbits of class II. The corresponding region is termed F

in Fig. 5, and a Poincar�e section is shown in Fig. 3F. The new class II orbits, of lowest

k, are the dark centers of the yellow region. The individual orbits violate S3-symmetry

but are images of each other under S3. The saddle point near 1 = �1 appears together

with these orbits but is class IV, see below. Both orbits lose their stability simultaneously

upon transition into parameter region G, see Fig. 3G. This happens in connection with

the occurance of period 1 and period 2 orbits of class I. Each critical point of class II

gives way to two points of class III. Two of these lie on the axis q = 0 (in the left part

of Fig. 3G), their S3-images are o�-axis. The orbits persist in region H (cf. Fig. 3H) but

disappear at the bifurcation line (79) which marks the transition to region E.

At this stage we digress from our computation of critical points with q = 0, and add

information about critical points with 1 = 0. Our Poincar�e sections suggest that such

orbits should exist. They are most easily discussed directly from Eqs. (41)-(44). With

1 = 2 = 0, we have immediately

h� 1�
1

2
l2 = p2 + q2 = k (80)

which is the de�nition of Appelrot's class III, see Eq. (78). Considering, as before, k2 as

a function of q, and 1, we �nd that

@k2

@q

����
1=0

= 0 (81)

identically. This peculiar feature is clearly borne out in the series of Fig. 3. The other

condition for critical points is
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@k2

@1

����
q

(1 = 0) = 2p(p+ l(p2 + q2))
!
= 0 : (82)

This can be ful�lled in two ways. One is to take p = 0. Inserting this into Eqs. (41)-(44)

we get

h� 1�
1

2
l2 = q2 : (83)

By comparison with Eq. (58), we see that this de�nes four points on the boundary of the

Poincar�e section. The adequate interpretation is here not that of a critical torus; rather

we have a tangency of the separatrix with the Poincar�e surface of section. The other

possibility p+ l(p2 + q2) = 0 leads to p < 0 and

q2 = (h� 1�
1

2
l2)(1� (h� 1)l2 +

1

2
l4) = k(1 � kl2) (84)

which by comparison with Eq. (79) gives real values for q in the whole parameter range

of Appelrot class III, except in region E. With 1 = 0 the Euler Eqs. (23) give _2 = p3,

and because of p < 0 the section condition _2 � 0 is only ful�lled at 3 < 0, implying

# = �; it does not hold at # = 0.

To sum up, there are 4 or 6 o�-axis points of Appelrot class III. The 4 boundary

points are a special feature of the particular section condition (54) and not to be viewed

as critical tori. This is especially obvious in region E where the line 1 = 0 is not part of

a separatrix. The 2 o�-axis critical points of class III exist in regions B, C, D, G, and H.

They are included in the scheme of Fig. 4II/III.

3.2.3. Appelrot class IV

The last Appelrot class derives from the factor

pr + 3 = 0 : (85)

in Eq. (73). Proceeding as before, we eliminate the variables r and 3 with the help of

Eqs. (56) and (57). The result is more involved than in the other cases:

1� 2
1
+ p(l � 21p) = 0 ;

2(h � 1 + 1 � p2)(1� 2
1
)� (l � 21p)

2 = 0 :
(86)

We do not care to write down the sixth order polynomial for 1 that is obtained by

eliminating p; it is easier to �rst eliminate 1 and compute p from

l + 2p(h� 1� p2) = 0 : (87)

1 can then easily be obtained from the �rst of Eqs. (86). The corresponding k-values are

21



k2 = 1 + lp+ p4 : (88)

Depending on the values of (h; l2), we �nd up to 5 physically possible solutions of Eqs. (86)

and (87). Their bifurcation scheme is organized by the discriminant of the sixth order

1-polynomial, and by the two lines de�ned in (76) which again mark the situation 2
1
= 1

for some solutions. The discriminant has two relevant parts. One is identical with the

topological discriminant �, see (61) and (71); the other is

(h� 1)3 �
27

16
l2 = 0 : (89)

The complete scheme for class IV is presented in Fig. 4IV. For identi�cation of certain

parts we refer to the notation in Fig. 5.

In regions A and B there is just 1 critical orbit of class IV. It has period 1 and is stable

because it assumes the maximum possible value of k. It has both S2 and S3 symmetry.

In the series of Poincar�e sections (Figs. 3) this orbit is characterized by the lightest color

in the red region. It is the only orbit that exists for all parameter values (h; l2).

Crossing from region B into region C, two new orbits of class IV appear by tangent

bifurcation, one elliptic, the other hyperbolic. Both orbits possess complete S2, S3 sym-

metry. The elliptic orbit corresponds to a local maximum of k; its neighborhood is shown

in blue. The separatrix associated with the hyperbolic point divides the red region into

two parts, with orbits of the same symmetry. The orange color was chosen as a reminder

of this similarity in character. An alternative choice would have been to continue the red

color across the separatrix; we prefer to enhance the separatrix.

A major change occurs at the transition from C to D, as the topology of P changes

from disk to annulus through a connection at 1 = �1 (the potential maximum). A new

orbit of class IV (yellow) enters from the boundary at 1 = �1; it can be considered as

the continuation of the vanishing orange orbit of class III, and has the same symmetry

(only S3). At the same time there is a rearrangement of the separatrices around the green

and blue regions. This scenario can be observed by comparison of Figs. 3C and D, or for

the special case l = 0 in Figs. 3K and L.

The transition from parameter region D to E does not change the number of critical

orbits of class IV, but the blue elliptic orbit becomes hyperbolic via collision with two o�-

axis saddle points of class III; the blue region vanishes in that collision. A similar pitchfork

bifurcation, without change in number of class IV orbits, occurs at the transition from

region E to H. In Fig. 3H the elliptic centers of the purple regions are class IV, the

saddles between green and purple are class III. These changes of stability occur along the

bifurcation line (79) of class III; in Fig. 4IV this is marked as a dotted line.

Going from region H to G in parameter space, P separates into two pieces along

1 = �
1
, see (62). In this connection, the two elliptic orbits in the purple regions change

from class IV to class I. As a result, there are only two class IV orbits in regions G and

F: the stable center of the red region, and the saddle between the two yellow lobes. The

tiny regions I and J have 3 and 5 orbits of class IV, respectively. Going from H to J, the
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annulus structure of P is broken at 1 = �1, and the class III orbit at the left boundary

of Fig. 3H turns into class IV. This makes for 5 class IV orbits altogether, 3 elliptic and

2 hyperbolic. Going from J to I, P is again disrupted at 1 = �
1
, and the purple centers

become class I.

3.3. Phase diagram and Poincar�e-Fomenko stacks

Fig. 5 summarizes the information about the bifurcation scheme of critical orbits. We

call it a phase diagram of Poincar�e surfaces of section. Each point of the (h; l2)-plane

(with h � l2=4) is understood to carry one of the ten di�erent types of P shown in Fig. 3.

The projections of the various bifurcation lines onto this plane are the loci of transitions

between the various types, or \phases", of dynamical behavior.

A more re�ned phase diagram might be obtained by taking the full three dimensional

(h; l2; k)-parameter space, i. e. to attach to each point of the (h; l2)-plane the allowed

range of k-values. Connecting the critical points in this 3-D representation, one obtains

surfaces which divide the parameter space into �ve connected regions. These regions were

introduced and numbered i through v by Kharlamov [1983] who provided 2-D sections of

the 3-D parameter space at constant l. With (h; l2)-values from region A in Fig. 5, all

allowed values of k give the same type of orbit (colored red in the series of Fig. 3), and the

corresponding Kharlamov type is i. There are two types over region B, i at high values of

k (red orbits), and ii at low k (green orbits). The situation over region C shows, however,

that the scheme of Kharlamov regions is not yet su�cient to distinguish all types of tori:

there is a range of k-values with orbits of two di�erent types (red and blue). In order

to keep track of this kind of distinction, we propose a more detailed color scheme that

characterizes tori rather than (h; l2; k)-values. Moreover, we take the rather physical point

of view that it is most interesting to look at the system at �xed values of the energy h. It

is then possible that orbits of the same Kharlamov type (red and orange) are separated

by a separatrix (in analogy to the separation of uids into liquid and gaseous phases at

constant temperature). The relationship of the two classi�cation schemes can best be

discussed in terms of Fomenko graphs [Fomenko, 1991].

Consider Fig. 6 which assigns each type of P a Fomenko graph. The graphs carry

vertical order: the value of k increases from bottom to top. (This feature is absent in

Fomenko's version of his graphs.) The construction principle is to give every torus a

unique representation, to identify its type by color, and to preserve connections. Color

changes occur at separatrices. End points of an edge correspond to local or global extrema

of k; they represent elliptic critical orbits. At the left side of each graph we indicate the

Appelrot classes of bifurcations, at the right we identify the Kharlamov regions.

The overall correspondence between Kharlamov's regions and our colors is the follow-

ing: red for region i, green for region ii, yellow for region iii, blue for region iv, and purple

for region v. The di�erence comes in where there are two types of tori for the same set

of (h; l2; k): Kharlamov's region iv contains blue and red orbits; his region v contains

purple and green orbits; on the other hand he identi�es our orange region as i (red), and
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turquois as ii (green). We need these additional colors because the Poincar�e surfaces of

section contain a separatrix between red and orange tori, as well as between green and

turquois.

Let us discuss the individual graphs. Graph A has only one edge: for each k-value

between minimum (class II) and maximum (class IV) there exists exactly one torus of full

symmetry and Kharlamov region i. All other graphs carry a red edge at their top. Graphs

B and F are the next simplest, and of identical structure. Two S3-symmetry related edges

have developped at the lower end, of Kharlamov regions ii and iii respectively. Graph E

can be viewed as a natural extension of B or F, with two segments to its symmetry

breaking parts. But note that there is no direct transition from E to B or F, except

through the special point (h; l2) = (2:5; 2). Graph C has one arm attached to the i-region

of graph B. Being without partner, the new arm must represent tori with full symmetry.

The point of attachment corresponds to a separatrix of class IV. The appearance of the

arm does not change the character of the red orbits; thus we retain their color in contrast

to Kharlamov who counts them as part of region iv. The change of color from red to

orange (which is not reected in Kharlamov's typology) is required to take care of the

new separatrix. Graph D has an interesting separatrix of class III at which four di�erent

tori meet. Graph J has a similar relationship to B as C has, except that the tangent

bifurcation has occured at the two lower edges. Going from J to H there is an exchange of

classes III and IV of critical tori; this implies a transition of Kharlamov type from region

ii to region iii. The graphs G and I are very similar to graphs H and J respectively, the

only di�erence being the length of the purple edges.

The Fomenko graphs are valuable because they condense the information contained

in the Poincar�e surfaces of section to their very essence; they are a qualitatively correct

representation of the organization of invariant tori for given parameters (h; l2). To obtain

a representation of a complete energy surface with given h, we have to superimpose all

Fomenko graphs for that particular h. At h = 1:9, e. g., we would have to stick together

graphs of type C, B, and A, following increasing values of l. This gives a �rst idea of the

structure of the energy surfaces.

To obtain a quantitative version of the Fomenko representation, we observe that the

#-axes of the P's contain already the relevant information. Fig. 2 which is typical of

phase B, contains two segments of the #-axis which lead from minimum to maximum

k: the left piece from k = 0 to the separatrix value, the right piece from the separatrix

to the maximum. If we keep in mind that the two green edges of Fomenko graph 6B

are related by S3-symmetry (and thus have the same action integrals), we may ignore

the second edge, and take the combination of the two horizontal segments in Fig. 2 as a

quantitative realization of the Fomenko graph for (h; l) = (2:2; 1:259). A superposition

of corresponding segments for all possible values of l, 0 � l2 � 4h, could be taken as a

vizualization of the energy surface in which each (l; k)-torus is represented with just one

point (up to symmetry S3).

Fig. 7 is essentially that representation for the di�erent types of energy surfaces,

corresponding to the qualitatively di�erent ways to cut through the phase diagram (Fig. 5)
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at constant h. There is redundancy in the pictures of Fig. 7 in that the tori are represented

with two or even four points (in case of the green and yellow orbits). This allows us to

select from each torus the most convenient representative point for matters of integration.

The pictures of Fig. 2 help us keep track of what belongs together.

Consider now the \Poincar�e-Fomenko stack" of Fig. 7a. Its energy is h = 0:5, and the

picture is typical for energies h � 1. All tori belong to the same Kharlamov region i, and

are represented by two points. Both critical orbits are elliptic; their location is indicated

by two black lines. Class IV runs near the vertical axis and belongs to the highest k,

class II stays close to the right boundary and represents the tori of lowest k. The region

between these two lines contains one and only one point of each torus; thus it is a complete

representation of the energy surface and may be called a \minimal Poincar�e-Fomenko

stack", or simply a Fomenko stack. Along the boundary of this Fomenko stack (including

the bottom line l = 0), one of the three action integrals is zero as the corresponding

torus has zero width. At the three intersections of these lines, the motion is particularly

simple in that two action integrals vanish: The top of the �gure represents pure rotation,

with the center of mass in the stable equilibrium position; the center of the bottom line

represents a pendulum oscillation in 2 (i. e. in angle  , with # = �=2), while the right

corner point represents a pendulum oscillation in 3 (i. e. in angle #, with  = �=2).

The Poincar�e-Fomenko stack of Fig. 7b (h = 1:9) is typical for energies in the range

1 < h < 2. Its upper part (large values of l2) resembles the previous stack, but at

intermediate l2, Fomenko graphs of type B are added, and near the bottom, graphs of

type C. Three Kharlamov regions contribute: i, ii, and iv. The black lines in the red,

dark green, and blue regions give the location of elliptic critical tori: classes IV and II

in the red, class I in the dark green, and class IV in the blue region. Separatrices are

identi�ed as a change in color; if that is not possible as in the light part of the green region

near the left boundary, saddle points are also marked black. Again the stack contains

two points for every torus (but note that only one of the two symmetry related green tori

is shown). A minimal Poincar�e-Fomenko stack would contain the following parts: the

red region between the line of class IV orbits at left and the line of class II orbits and

separatrices at right; the adjoining part of the green region up to the orbits of class I;

the blue region between the separatrix at its left and the central orbit of class IV; the

orange region between green and blue. This leaves us with a hole in the bottom part of

the stack. We remark that at l = 0, the red and blue orbits are images of each other

under S3; this symmetry suggests to select the left part of the blue region rather than

the right, though this is of course an arbitrary choice. With regard to the eventual goal

of our analysis, which is the determination of action integrals for each torus, we cannot

in general expect continuity across separatrices. We shall attempt to preserve as much

continuity as possible, and use the Poincar�e-Fomenko stacks to guide us. At this stage it

appears impossible to connect the blue part of a Fomenko stack to both red and orange.

As to the physical interpretation of special tori, such as the beginning and end of

the lines of critical tori in the green and blue regions, a large body of knowledge has

accumulated ever since the original work of Kovalevskaya, notably in the Russian math-
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ematical literature. Most of this has remained unread by Western physicists to this very

day. Nowadays, even though that literature has become much more accessible, the fastest

way to develop familiarity with the Kovalevskaya system is probably by working with

an interactive graphics oriented computer program which allows the user to select any

conceivable torus, and display it in whatever 3-D projection wanted. We have written

such a program, and suggest that the interested reader obtain a copy for his or her own

studies. A comprehensive description of all these details in pictures or words is de�nitely

outside the scope of this paper.

The yellow region (Kharlamov region iii) adds further complexity at energies above 2,

see Fig. 7c (h = 2:2) as typical for the energy range 2 < h < 1 +
p
2. Both symmetry

related yellow tori appear with two points each. If we include them both in the minimal

Poincar�e-Fomenko stack, a convenient choice would be to add to the stack of Fig. 7b the

rightmost yellow strip, and the right part of the central yellow lobe.

Increasing the energy further, the yellow region becomes more and more prominent;

eventually, in the Euler{Lagrange limit h!1, yellow is the only color to survive. Fig. 7d

(h = 2:45) is typical for the small energy range 1 +
p
2 < h < 2:5. Its new feature is that

the stack contains Fomenko graphs of type E, at intermediate levels of l. Because of the

lack of blue in that range, the yellow part of the energy surface connects to both green

and red (compare the Fomenko graph 6E). In the energy range 2:5 � h � 3 this feature

develops into a major characteristics of the stacks. The �ne details of the phase diagram

in the parameter range 2:5 � h � 3, 2 � l2 � 4, give rise to a complicated scenario which

is not well resolved on the scale of Figs. 7. Thus we refrain from presenting Poincar�e-

Fomenko stacks for these energies, and leave the discussion of the details related to regions

I and J to a forthcoming publication where we plan to attain higher resolution. Figs. 7e

and f are the same type of Poincar�e-Fomenko stacks, at intermediate and high energies

h = 3:3 and h = 10. The blue and purple parts are still present, but with vanishing relative

weight. As before, every torus is represented by two points, and all tori are visible, except

for the green of which only one S3-partner is shown, but with four representative points.

There are several obvious possibilities to select a minimal Poincar�e-Fomenko stack.

This completes the ordering of all invariant tori of the Kovalevskaya system. Note

that for every torus with parameters (h; l; k) there is a partner under time reversal l !
�l if l 6= 0. This requires to take every stack twice, but we shall not consider this

extension any further. We now proceed to computing the relevant physical properties of

the Kovalevskaya tori, viz., their action integrals and energy surfaces.
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4. Calculation of Action Integrals

The Arnold{Liouville theorem [Arnold, 1978] guarantees the existence of action-angle vari-

ables in the Kovalevskaya system. There are three independent closed paths Ci around

each invariant 3-torus, and the integrals

Ii :=
1

2�

I
Ci

L'd' +
1

2�

I
Ci

L#d# +
1

2�

I
Ci

L d (90)

de�ne actions I := (I1; I2; I3) which are invariant under deformations of the paths, and

under canonical transformations of the variables (�;L). The particular canonical trans-

formation that chooses the (I1; I2; I3) to be the new momenta, introduces cyclic angles

(�1; �2; �3) whose time dependence is trivial:

_�i =
@H
@Ii

=: !i : (91)

The ! := (!1; !2; !3) are the set of characteristic frequencies of each torus, and represent

its physically most relevant properties. As Eq. (91) shows, this information is contained in

the function H(I). Unfortunately, this function has never been determined. An explicit

analytical derivation seems out of reach. The following is a numerical calculation of energy

surfaces h = H(I) for six selected values of the energy constant h. This work was made

possible by the recent development of an algorithm for the e�cient calculation of actions,

based on Arnold's constructive proof of the Liouville theorem (Dullin and Wittek [1993]).

The �rst action integral presents no problem, as ' is a cyclic variable and L' = l a

constant. De�ning path C1 by # =const and  =const, we have

I1 � I' =
1

2�

Z
2�

0

L'd' = l : (92)

The non-trivial problem is to �nd independent paths C2;3 around the 2-tori in (#;  ; L#; L )-

space, with l considered a parameter and ' =constant. The action integrals are then

I2;3 :=
1

2�

I
C2;3

L#d# +
1

2�

I
C2;3

L d : (93)

As the 2-tori remain 2-tori after the transformation (�;L) 7! (~ ;~l ) to Euler variables,

we attack the problem in these more convenient though non-canonical variables. To give

the reader an impression of how hopeless it would be to �nd suitable paths by means of

intuitive guessing, Fig. 8 shows the torus (h; l; k) = (2:2; 1:259; 0:492) in three di�erent

3-D projections of (~ ;~l )-space. A systematic procedure is clearly indispensable.

27



4.1. Independent paths around the 2-tori

The key to the algorithm of [Dullin & Wittek, 1993] is the observation that Hamiltonian

and Kovalevskaya constant generate two independent ows on the invariant tori. Just as

the Hamiltonian ow of a quantity F is given by Eqs. (34) and (45), the Kovalevskaya

ow is de�ned as
dF

dtK
= fF; k2gE = rEF

TMErEk
2 (94)

with

MErEk
2 =

0
BBBBBBBBBBB@

m23

m13

�m21 �m12

m2r � 2k23

m1r + 2k13

�2m2p� 2m1q + 2k21 � 2k12

1
CCCCCCCCCCCA

; (95)

where the abbreviations

k1 = p2 � q2 + 1 ;

k2 = 2pq + 2
(96)

and

m1 = k1l1 + k2l2 = 2p(p2 + q2 + 1) + 2q2 ;

m2 = k1l2 � k2l1 = �2q(p2 + q2 � 1)� 2p2
(97)

have been used.

A given point P on the torus, if subject to the Hamiltonian ow gH , is carried in

time tH to another point P(tH) = gtH
H
P on the same torus. In the case of irrational

winding number, it never returns to the original point, as tH increases. So gH in itself

does not produce a closed path. Likewise, if P is taken up by the Kovalevskaya ow gK ,

its trajectory P(tK) = gtK
K
P in general does not close upon itself. But as the two ows are

linearly independent, it is possible to construct closed paths by combining them. Fig. 9

shows how this is done in principle. Following the Hamiltonian dynamics from P0 to

A, and then the Kovalevskaya dynamics from A to P1, one arrives at P1 �P0 along a

nontrivial closed path. Similarly, going from P0 to B with gH , and then backward in time

tK with gK, one arrives at P2 �P0 along an independent closed path. Furthermore, as

Hamiltonian and Kovalevskaya constant are in involution, their ows commute, and the

closed paths from P0 to P1 or P2 may be generated by the ow gtH
H
gtK
K

= gtK
K
gtH
H

which

is generated by a linear combination of the Hamiltonian and Kovalevskaya vector �elds,
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with suitably chosen times tH and tK:

d

dt

0
@ ~
~l

1
A = tHMErEH + tKMErEk

2 : (98)

So the problem is reduced to �nding the times tH and tK . The algorithm achieves

this in the following way. For all values of tH and tK in a su�ciently large and dense

lattice, the distance between P and gtH
H
gtK
K
P in phase space is measured, and recorded

as a contour plot in the (tH ; tK)-plane. The result is a doubly periodic lattice, each cell

of which covers the torus just once. If the corners of a cell are chosen to be the points

equivalent to P, then their distance values to point P= g0
H
g0
K
P are zero; at all other points,

the distance is positive. In a real computation, the distance zero is of course never found

exactly, and a search for minima su�ciently close to zero must be performed. Once this

has been achieved for a torus with parameters (h; l; k), one proceeds in small increments

to neighboring tori, using Newton's method to �nd their minima from the old.

The procedure has proven to be e�cient and accurate in [Dullin & Wittek, 1993]. In

the present analysis of the Kovalevskaya system, we show 6 energy surfaces with some 200

times 200 tori each. After identi�cation of the two independent paths, the integration of

Eqs. (98) was done with standard integration routines of variable step size, the minimum

number of steps being 4000. The action integrals (90) were computed along with that

integration, using the transformation Eqs. (6) and (26) - (28) to recover the canonical

variables from Euler's. The calculations were done on an R4400 64 bit processor of

Silicon Graphics (100 MHz); they required about 3 hours CPU time for energy h = 0:5,

and 16 hours for h = 3:3.

Let us comment on a number of di�culties, one systematic, the others numerical. The

systematic problem pertains to the '-motion which cannot quite be ignored inspite of

the fact that it has been separated from the rest. The action integrals (93) assume ' to

be constant, but in fact it changes according to Eq. (29) which we integrate along with

the determination of the i and li, in order to keep track of its behavior. Let �' be the

total change of ' along a given closed path on the 2-torus. Now vary the parameters; it

sometimes happens that �' jumps by �2� because the trajectory encircles the points

# = 0 or � once more or less than before. This jump is then accompanied by a jump of

the �rst part of the action integral (90), and since the total integral (90) is continuous,

the integral of interest (93) jumps by �l. Such jumps are compensated by addition of �l
to have the I2;3 continuous within a region of continuity of the energy surface.

The �rst numerical problem arises in the vicinity of elliptic critical orbits where one

of the two diameters of the torus tends to zero. As a consequence, the distances along

one of the two fundamental paths never get very big, so the minima are ill de�ned. The

second problem appears in connection with separatrices where one of the fundamental

frequencies tends to zero. This implies long integration times with accumulating errors;

moreover, the '-variable tends to make many turns in these cases, and it becomes di�cult

to keep track of the number of jumps it makes between neighboring parameter values.
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Finally, it is not trivial to secure a smooth connection of pieces that belong together,

but are computed with di�erent Fomenko graphs. Consider, e. g., the Poincar�e-Fomenko

stack of Fig. 7d. Starting at the top, its succession of graph types is A, B, E, D. At the

transition from type B to E, our data did not quite allow to present a smooth red surface,

see Fig. (10d). This may be related to the very thin strips of type C and D graphs coming

in, see Fig. (5).

4.2. Action integrals and energy surfaces

The computation described in the last section provides a set of raw data that have to

be turned into the desired energy surfaces H(I) = h in action space. For the simpler

integrable cases of rigid body dynamics, i. e. Euler and Lagrange tops (including the

modi�cations introduced by a cardanic suspension) this goal was �rst achieved in 1990
[Richter, 1990], using explicit expressions for the Ii in terms of elliptic integrals. There

it was possible to associate the actions I2 and I3 with the motion of Euler angles  and

# respectively. As the character of '- and  -motion was rotational (except for the low

energy regime of the Lagrange top), and that of the #-motion oscillatory, it was natural

to have I' and I of both signs, corresponding to the two senses of the rotation, and only

positive I#. The shape of the energy surfaces in (I'; I ; I#)-space turned out to be that

of pyramids with bottom in the (I'; I )-plane and top on the I#-axis.

In the very low energy range h� 1, the actions can easily be computed analytically.

Expanding the Hamiltonian (39) to second order in the small dynamical variables �# =

#� �=2, � =  � �=2, and L', L#, L , we get

H =
1

4
L2

' +
1

4
L2

# +
1

2
(�#)2 +

1

2
L2

 +
1

2
(� )2 ; (99)

which can be separated into a '-rotation, a #-oscillation with frequency !# = 1=
p
2, and

a  -oscillation with frequency ! = 1. The action representation is therefore

h =
1

4
I2
'
+

1
p
2
I# + I : (100)

The energy surface in (I'; I ; I#)-space intersects the plane I' = 0 in a straight line

I# =
p
2(h�I ), representing the possible superpositions of the two oscillations. The other

two planes are intersected in parabolas, corresponding to superpositions of '-rotation and

one of the two oscillations. The Kovalevskaya constant reduces to

k2 = 1 +
1

2
L2

'
�

1

2
L2

#
� (�#)2 = 1� 2h+ I2

'
+ I ; (101)

and ranges from 1� 2h at I' = I = 0 to 1 + 2h at I# = I = 0.

Fig. 10a shows a very similar energy surface for h = 0:5, calculated with data from

the above procedure. The I'-axis points to the right, the I -axis to the left, and the

I#-axis upwards. As I and I# correspond to oscillatory motion, only positive values
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are meaningful whereas I' = l may have both signs. Because of the symmetry of the

Hamiltonian under time reversal, we ignore the I' < 0 part of the energy surface in all

the following. The correspondence of the Poincar�e-Fomenko stack of Fig. 7a and the

surface of Fig. 10a is obvious.

The relation of Figs. 7b and 10b is more complicated and needs a number of comments.

One may take the point of view that actions should be de�ned separately for each part

of the energy surface which is con�ned by a separatrix, the reason being logarithmic

singularities at separatrices that prevent analytic continuation. This would suggest to

consider �ve independent sheets in the energy range 1 < h < 2: one each for the red,

orange, and blue regions of the Fomenko stack, and two for the two symmetry related

green. On the other hand, one may try to preserve as much continuity as possible,

using the sum rules obeyed across separatrices, and the freedom to transform actions by

matrices from SL2(Z). This was a guiding principle in our construction of energy surfaces,

together with the rules formulated in [Dullin & Wittek, 1993] that elliptic periodic orbits

should have one action zero, and that two di�erent elliptic periodic orbits, if connected

by a smooth path of non-critical tori, should have di�erent zero actions. Comparison of

Figs. 10a and 10b presents no problem as far as the red and orange parts are concerned.

The rupture between the two is caused by the blue region creeping in at low l. But where

to put the blue sheet? We mentioned that at l = 0, the blue and red orbits are related by

S3 symmetry. Their actions are therefore the same, so the red and blue sheets coincide

along a line in the I' = 0-plane. Furthermore, the elliptic tori at the center of the blue

region in Fomenko stack 7b should have another action zero, according to the above rules;

so they must be mapped to the plane I2 = 0 where they lie slightly above the red sheet.

The action integrals of the green region connect smoothly to the red or orange, if we take

the sum for the two symmetry related green orbits. This was done in Fig. 10b to obtain

maximum continuity. One may argue whether that is convenient. An alternative would

be to give separate representations to the two green orbits, and to distinguish them by

the sign of I2. With that choice, the blue sheet should also lie on the side of negative I2,

because of its relationship to the red. Fig. 11 illustrates this alternative for the case of

h = 10.

Fig. 10c gives the energy surface for h = 2:2. The orange part has almost disappeared,

and yellow shows up for the �rst time. Its symmetry properties are the same as those of

green, so in the alternative representation, the two would undergo identical changes. At

energy h = 2:45, see Fig. 10d, the orange piece is absent, and yellow connects to red along

a separatrix. A new feature is observed at energy h = 3:3, see Fig. 10e: an edge has formed

within the yellow sheet, and a pyramid structure reminiscent of those in [Richter, 1990]

has formed. The constructional principle that leads to the edge is a change in the linear

combination of raw data, necessitated by the requirement of continuity with both green

and red. The locus of the edge on the Poincar�e-Fomenko stack 7h is the intersection

of graphs of type E with the line 1 = 0, where the condition for Appelrot's class III

holds. A physical interpretation is that corresponding orbits have the rigid body's 3-axis

go through the z-axis of the �xed system. This implies a jump in the rotation of the
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'-variable with respect to the �xed axis. Purple and turquois pieces should be added

where the green sheet meets the yellow edge, but at the resolution of the picture they are

too small.

Our last picture, Fig. 10f, illustrates the high energy end, h = 10. The yellow part

assumes most of the energy surface and resembles the high energy surfaces of the La-

grange case in ref. [Richter, 1990]. The green seam marks the low k end of the energy

surface (Appelrot class I) while the red tori survive at the high k end. In the limit h� 1

the Kovalevskaya constant can be expressed in terms of the total angular momentum

l2
tot

= l2
1
+ l2

2
+ l2

3
as

k =
1

2
l2
tot
� h : (102)

The lines of constant k can then be interpreted as lines of constant total angular momen-

tum. For comparison, we show in Fig. 11 the alternative version where the S3-symmetry

related green and yellow orbits are distinguished by the sign of I2. The red part of the

energy surface represents tori which possess this symmetry individually, and has only pos-

itive values of I2; in this rendering, it is no longer continuously connected to the yellow

part.
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Figure captions

Fig. 1: De�nition of Euler's angles as used in the text. The (x; y; z)-system is �xed in

space, gravity pointing downward. The (1; 2; 3)-system is the rigid body's frame

of reference. Its position relative to the �xed system is given uniquely by angles

0 � ' < 2�, 0 � # � �, 0 �  < 2�. The Kovalevskaya top has its center of mass

on the negative 1-axis, so its stable equilibrium position has the 1-axis aligned with

the z-axis. This means # =  = �=2 ; the angle ' is undetermined.

Fig. 2: Projection P of a Poincar�e surface of section onto the (#; L#)-plane, for h = 2:2,

l = 1:259. The angle # ranges from approximately ��=4 to 5�=4, the momentum

L# between �
p
4h� l2 . The lines are intersections of invariant tori (except for the

two horizontal pieces). The open circle marks an elliptic �xed point of period 1,

representing a critical torus of class IV, of maximum k. The four full circles mark

two stable orbits of period 2, the pair on the #-axis being the S3-symmetry partner

of the o�-axis pair. They are class I (k = 0). The full squares are hyperbolic

critical orbits of class III; they are the centers of a system of separatrices which has

a tangency with the boundary at the four empty squares. The horizontal segments

intersect every torus of the system in exactly one point (except for the tori in the

o�-axis lobes); they form a possible Fomenko graph for this particular Poincar�e

section.

Fig. 3: Series of typical Poincar�e surfaces of section from the 10 phases de�ned in Fig. 5.

Regions with topologically equivalent tori are coded by colors; they are closely

related to Kharlamov's regions, although there are discrepancies as explained in the

text: i - red/orange, ii - green/turquois, iii - yellow, iv - blue, v - purple; within each

region, the change from dark to light codes for increasing values of k. The invariant

tori are given as level lines of equal color. The #-scale extends from ��=2 to 3�=2 in
each case, the maximum of jL#j is

p
4h� l2 and changes from picture to picture. A:

Low energy h = 0:5; l2 = 1. The darkest point near the right boundary is a stable

periodic orbit of class II, the lightest point near the center a stable periodic orbit of

class IV. B: h = 2:2; l2 = 1:58. The class II point of Fig. A has developped into 3

unstable points of class III and two stable orbits of period 2, the centers of the green

lobes. C: h = 1:9; l2 = 0:34. Two new orbits of class IV have appeared through

a tangent bifurcation; the unstable partner introduces a separatrix in Kharlamov's

region i, dividing it into a red and an orange part. There is a local maximum of k

in the blue region. D: h = 2:2; l2 = 0:40. The system of separatrices around the

green and blue lobes is rearranged, and the orange region has bifurcated into two

S3-related yellow regions. E: h = 2:85; l2 = 1:43. The blue orbits have disappeared,

their stable center has collided with the two unstable o�-axis point to give way to

just one unstable orbit. F: h = 3:5; l2 = 5:30. Comparing with Fig. A, a new disk

has formed around the unstable equilibrium point at # = 3�=2. This disk contains

a pair of orbits, a stable one of class II and an unstable of class IV. The stable class
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IV orbit near the right boundary of Fig. A has turned into a stable class II orbit,

the S3-related partner of the other class II orbit. G: h = 3:5; l2 = 4:82. The two

yellow centers have each bifurcated into two stable points of period 2 and class I

(green), two unstable points of class III, and one stable point of period 1 and class

I (purple). H: h = 2:85; l2 = 3:29. The two disks of Fig. G have merged into an

annulus. The two purple centers change their Appelrot class from I to IV, otherwise

G and H are not very di�erent and might be considered physically equivalent. I:

h = 2:8; l2 = 3:26. This Poincar�e section should be compared to B. Two new disks

have appeared, each containing a pair of orbits, one stable, the other unstable. The

corresponding separatrix introduces a new division in the previously green region,

part of which is therefore colored in turquois now. J: h = 2:8; l2 = 3:23. The

relation of J to I is the same as that of H to G. The two small disks have joined the

big one, and the two purple centers have changed their class from I to IV, without

change in stability. There is no physical distinction between region I and J. K:

h = 1:9; l = 0. The topology is the same as in C, but there is now an additional

symmetry with respect to the axis # = �=2; this reects the time reversal symmetry.

L: h = 2:2; l = 0. Topology as in D, but with time reversal symmetry as in K.

Fig. 4: Bifurcation lines in the (h; l2) parameter plane, 0 � h � 4, 0 � l2 � 8. Part

T of the �gure shows the lines de�ned by changes in the topology of the Poincar�e

surfaces P. They consist of 1, 2, and 3 disks in the regions marked 1d, 2d, 3d

respectively; in region a, P is an annulus. Part I gives the numbers of critical orbits

of class I in the various regions, 4+2 meaning 4 on-axis and 2 o�-axis orbits; they

are all elliptic. Part II/III is the bifurcation scheme for orbits of classes II (above

the dotted line) and III (below). Orbits of class II are elliptic, class III orbits are

hyperbolic. Part IV gives the numbers of class IV orbits; they all lie on the #-axis.

The dotted line marks a change of stability of one class IV orbit.

Fig. 5: Phase diagram of Poincar�e surfaces of section, combining the information of the

four parts of Fig. 4. The bifurcation scheme de�nes 10 di�erent types of surfaces P,
denoted by letters A through J. Some \phases" are very tiny and require a blowup

(see the inset). The open circles mark the parameter values chosen for the series in

Fig. 3.

Fig. 6: Fomenko graphs for the 10 di�erent phases of Fig. 5. There is a 1:1 correspon-

dence of points in the graph and tori in the Poincar�e surface of section. The vertical

ordering follows the Kovalevskaya constant: low k at the bottom, high k at the top.

The colors of the edges code for the type of tori. The ends of an edge represent crit-

ical tori; free ends are elliptic periodic orbits, branch points represent separatrices.

The Appelrot classes of critical tori are indicated at the left, the Kharlamov regions

at the right of each graph.

Fig. 7: Poincar�e-Fomenko stacks, generated by superimposing the #-axes of all Poincar�e

surfaces of given energy h. The horizontal axis of the pictures is #, the vertical axis
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is l2, with maximum value 4h. Stable critical points are indicated in black. Separa-

trices appear as changes in color; if that is not the case (because the enclosed region

is entirely o�-axis), they are also marked in black. These stacks are a qualitative

representation of energy surfaces, with some redundancy because tori have two or

four intersections with the #-axis. The redundancy is used to select minimal stacks

that are most convenient as a set of initial points in the numerical path �nding al-

gorithm. The energy values of the eight qualitatively di�erent stacks are 0.5 (a), 1.9

(b), 2.2 (c), 2.45 (d), 3.3 (e). The last stack (f) with h = 10 has the same structure

as stack (e), but illustrates how the yellow orbits dominate the Lagrange-Euler limit

of high energies.

Fig. 8: Three 3-D projections of the same torus (h; l; k) = (2:2; 1:259; 0:492). a: (1; p; q)-

space, b: (1; 2; 3)-space, c:(p; q; r)-space. The pictures were generated by a single

trajectory. In case b the projection is really 2-D rather than 3-D because of the

restriction 2
1
+2

2
+2

3
= 1 to a sphere; therefore we followed the trajectory only for

a short time. The �gure is meant to illustrate the formidable di�culty to identify

independent paths around the Kovalevskaya tori.

Fig. 9: Schematic description of the determination of fundamental paths P0P1 and P0P2

around a given torus. The line from P0 to A, B, and parallel lines, represent the

Hamiltonian ow; the line from P2 to B, and parallel lines, indicate the ow gen-

erated by the Kovalevskaya constant. The thick lines are combinations of the two

ows leading back to the original point in two inequivalent ways.

Fig. 10: Six energy surfaces in action representation h = h(I1; I2; I3). The axis pointing

the right represents the �rst action I1 � I' = l, I2 points to the left, and I3
upwards. The axes are scaled according to the maximum value of l which is 2

p
h.

The energy values are a: h = 0:5, b: h = 1:9, c: h = 2:2, d: h = 2:45, e: h = 3:3, f:

h = 10. Surfaces of this kind contain the relevant physics of an integrable mechanical

system; besides the ordering of tori into types of di�erent behavior, their slopes give

frequencies and winding ratios. They are the basis for perturbation theory and

semiclassical quantization.

Fig. 11: Another rendering of Fig. 10f. The I2-axis is extended to negative values;

positive values pointing towards the back. Two S3-symmetry related yellow or

green tori are distinguished by the sign of I2.
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Figure captions

Fig. 1 Euler angles

Fig. 2 Example of a Poincar�e section

Fig. 3 Series of 10 Poincar�e section

Fig. 4 Location of Appelrot classes I - IV in (h; l2)-space

Fig. 5 Phase diagram of Poincar�e surcaces of section

Fig. 6 10 Fomenko graphs

Fig. 7 8 stacks of paths

Fig. 8 3 views of the same torus

Fig. 9 two independent paths around a torus
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Fig. 10 6 energy surfaces

Fig. 11 6 alternative form of energy surface
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