
Abstract

In the late 1970s, Gavin observed that Riesz product measures
based on powers of 3 are ergodic for the action of the triadic rationals.
This caused us to examine the role of Riesz product type constructions
in ergodic theory and led us to explore the theory of G-measures. I
will give an overview of our work, and show how it has now led to
a structure theorem for all non-singular ergodic dynamical systems
up to orbit equivalence: Hamachi and I recently proved that every
such system is orbit equivalent to a uniquely ergodic G-measure on
a Bratteli-Vershik space, realised as an induced transformation on a
closed set of an infinite product space.
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1 Riesz Products

Recall that F.Riesz (1927) introduced certain measures on the
circle T by choosing sequences −1 ≤ ai ≤ 1 and φi ∈ T, and
defining:

µ = lim
n→∞

n∏
k=0

(1 + ak cos 2π(3kt + φk))dt

Riesz showed that there was a unique weak*-limit measure µ,
and that these measures, which became known as Riesz prod-
ucts, were often singular with respect to Haar measure dt.

Before coming to Australia, Gavin and Bill Moran did some
beautiful work on Riesz products, showing that they were abso-
lutely continuous with respect to Lebesgue measure if and only
if

∑
a2

i < ∞, and were otherwise singular; and also producing
dichotomy theorems like those of Kakutani for infinite product
measures.
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Around 1978, Gavin observed that if we consider the action
of the triadic rationals on the circle, ie γ : t 7→ t+ p

3n , for various
values of n and p (relatively prime to 3), then µ ◦ γ ∼ µ and
in fact, the measures µ are ergodic for the action of the group
of triadic rationals Γ. This neatly explains the dichotomy, for
ergodic measures are either equivalent or singular.

Note that

dµ ◦ γ

dµ
(t) =

n−1∏
k=0

(1 + ak cos 2π(3k(t + p
3n ) + φk))

(1 + ak cos 2π(3kt + φk))

If we replace t with its ternary expansion, then µ can be
pushed forward to a measure on the infinite product space X =∏∞

k=0{0, 1, 2}, and that in this presentation, Γ acts as the group
of finite coordinate changes.
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2 G-measures

Let l(i) ≥ 2 be a sequence of integers and consider the in-
finite product space X =

∏∞
i=1 Zl(i), where we write Zl(i) =

{0, · · · , l(i) − 1}. Let Xn
m =

∏n
i=m Zl(i) and Xn = Xn

1 . We
shall denote |Xn| = s(n) =

∏n
i=1 l(i).

We have the finite coordinate change group Γ =
∐∞

i=1 Zl(i).
This has the same orbits as the odometer T , which acts on X

by the standard method:
Tx = y if y is the smallest element greater than x in the

lexicographic order, and if ` = (l(1)−1, l(2)−1, · · · , l(n)−1, · · · ),
then T` = 0 = (0, 0, 0, · · · ).

Gavin’s and my first paper Ergodic Measures are of Weak
Product Type showed that any measure on X which is ergodic
for the action of the finite coordinate changes (or alternatively
the odometer), was equivalent to a measure ν where, for all l

there exists m > l such that

ν(A ∩B) = ν(A)ν(B), for all A ∈ Cl, B ∈ Cm.

We had the feeling that the rate of growth of the “gap” m− l

was critical. We constructed the Radon derivative dν
dµ as an infi-

nite product
∏∞

l=0 gl(x) where gl(x) depends on the coordinates
from l to m. This was uncannily reminiscent of Riesz products,
so we decided to study this kind of measure.
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Let gi be a function on X i such that 1
l(i)

∑l(i)−1
y=0 gi(y + x) = 1

for all x. Let
Gn(x) = Πn

i=1gi(θ
i−1x),

where θ denotes the shift map.
We say that a probability measure µ on X is a G-measure

if for µ-almost every x ∈ X

dµ

dµn
(x) = Gn(x). (1)

Here µn denotes the measure 1
|Γn|

∑
γ∈Γn

µ ◦ γ.
In fact, every measure is a G-measure!
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In 1991 we showed that, provided the functions Gi are con-
tinuous, the existence of a unique G-measure is equivalent to
the convergence (everywhere, or uniformly) of the sequence of
functions

1

|Γn|
∑
γ∈Γn

f(γ(x))Gn(γ(x)) (2)

for all f ∈ C(X) and x ∈ X.
If (2) holds, then the limit is equal to

∫
fdµ for the unique

G-measure. We showed that a unique G-measure is necessarily
ergodic for the finite coordinate change action on X. In this
case, we say that µ is uniquely ergodic.

In the case when l(j) is constant (say = l for all j), we may
identify Xn with X via the shift map. If µ is shift invariant
i.e. µ ◦ θ = µ then all the functions gi are identical under this
identification, to a single function g, and we say that we have a
g-measure.
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3 Unique ergodicity

We gave various conditions on the functions gi such that we
have unique ergodicity; for example, uniform Lipshitz condi-
tions. Anthony Quas gave a beautiful construction that, for g

measures, circle continuity of g was not sufficient to guarantee
unique ergodicity.

In a recent paper, Örjan Stenflo and I gave what I believe
is the weakest condition under which there’s a uniquely ergodic
G-measure. We show that there is a unique G-measure provided
that

∞∑
n=1

n∏
m=1

cffG(s(m)) = ∞, (3)

where

cffG(s(m)) = inf
n

inf
1≤jl≤l(n+k),1≤k≤m−1

l(n)∑
i=1

inf
y

gn(ij1...jm−1y)

Theorem 3.1 Let G be a family of g-functions satisfying con-
dition (3). Then there exists unique G-measure, µ, i.e.

lim
n→∞

1

|Γn|
∑
γ∈Γn

f(γ(x))Gn(γ(x)) =

∫
fdµ (4)

for all f ∈ C(X) and x ∈ X.

This condition is slightly stronger than the weakest known
condition for uniqueness in g-measures of this type, see Stenflo
(2003).
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4 Ergodic theory and the structure theorem

Let (X,B, µ, T ) be a non-singular conservative measurable dy-

namical system with µ(X) = 1. Let ωi(x) = dµ◦T i(x)
dµ . We shall

assume also that the system is ergodic: every invariant set of
positive measure must have complement of measure zero.

Two such systems (X,B, µ, T ) and (Y, C, ν, S) are said to be
metrically isomorphic if there exists a bimeasurable invertible
mapping Φ : X → Y such that Φ◦T = S◦Φ and T◦Φ−1 = Φ−1◦S
a.e. and ν ◦ Φ−1 ∼ µ.

They are orbit equivalent if there exists Φ as above with
for all n and a.e. x, Φ ◦ T nx = Sm(x,n) ◦Φx. Then m(x, n) is an
integer-valued cocycle.
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Theorem 4.1 (D. and Hamachi) Every ergodic non-singular
dynamical system (X,B, T, µ) is orbit equivalent to a Markov
odometer. Furthermore, when considered as a G-measure, the
Markov odometer may be taken to be:

• uniquely ergodic

• a minimal transformation for the topology of X

• an induced transformation of a full odometer

I need to explain the notion of Markov odometer on a
Bratteli-Vershik diagram, and unique ergodicity in this con-
text.
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An ordered Bratteli-Vershik diagramconsists of:

• A vertex set V which is a disjoint union of finite sets V (n), n ≥
0.

• An edge set E which is a disjoint union of finite sets E(n), n ≥
1

• Source mappings s = sn : E(n) → V (n−1)

• range mappings r = rn : E(n) → V (n).

• a partial order so that edges e and e′ are comparable if and
only if r(e) = r(e′).
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The space X = X(V, E) of infinite paths is:

X = {(xn)n≥1 : xn ∈ E(n), t(xn) = s(xn+1), ∀n ≥ 1}

A partial order on X is

x < y, if ∃n ≥ 1, such that xn < yn, and xi = yi, ∀i > n.

There is a natural topology on X by taking as basic cylinder
sets [f1, ..., fk]

k
1 = {(e1, e2, ...) ∈ X : e1 = f1, e2 = f2, ..., ek =

fk}. These sets also define a σ-algebra on X.
We define T : X → X as follows. If x is some path which

is not the maximal path, then at least one of its edges is not in
Emax, choose such an edge with the smallest k and let fk be its
successor, let (f1, ..., fk) be the unique path in Emin from v0 to
r(xk), and let Tx = y, where y = (f1, ..., fk, xk+1, xk+2, ...).

If xmax is the unique maximal path, then we take Txmax =
xmin, where xmin is the unique minimal path.

T is the Vershik transformation of X. It’s an obvious
generalisation of the odometer.

Given a vertex v ∈ V (k), let Γk(v) be the permutations of the
finite paths finishing at v. Can be extended to X and has the
same orbits as T .
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Markov measures are defined by sequences of Markov tran-
sition matrices in Bratteli-Vershik systems.

We say that a matrix P (n) = {P (n)
v,e }(v,e)∈V (n−1)×E(n) is a stochas-

tic matrix if it satisfies the following two conditions:
(i) P

(n)
v,e > 0 ⇔ s(e) = v

(ii)
∑

{e∈E(n):s(e)=v} P
(n)
v,e = 1 ∀v ∈ V (n−1).

Given a sequence P (n) of stochastic matrices and a probability
measure ν0 on V (0) such that

ν0(v) > 0, ∀v ∈ V (0),

we define a measure µ on cylinder sets by

µ([e1, e2 . . . en]
n
1) = ν0(s(e1))P

(1)
s(e1),e1

P
(2)
s(e2),e2

. . . P
(n)
s(en),en

.

The dynamical system (X,B, T, µ) is said to be a Markov
odometer.
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Let µ be a T -quasi-invariant measure on X. For a fixed k,
define the tail measure µ(k) by setting, for n ≥ k,

µ(k)([a1, . . . , an]
n
1) =

1

|Γk(r(ak))|
∑

γ∈Γk

µ(k)(γ[a1, . . . , an]
n
1).

Then µ(k) is a Γk-invariant measure which is equivalent to µ.
Let Gk = dµ/dµ(k) and gk = dµ(k−1)/dµ(k).

Then Gk satisfies

1

|Γk(r(ak))|
∑

γ∈Γk

Gk(γa) = 1

for all infinite paths a ∈ X.
Further, Gk(a) = g1(a)g2(a) . . . gk(a), where for each i, gi

satisfies the two conditions:
(i) (invariance) gi(a) is independent of (a0, . . . , ai−1), and
(ii) (normalisation) 1

|E(i)(v,w)|
∑

{e∈E(i)(v,w)} gi(a1, . . ., ai−1, e, ai+1, . . .) =
1.

Here, v denotes r(ai−1), w denotes s(ai+1), and E(i)(v, w)
denotes {e ∈ E(i) : s(e) = v, r(e) = w}

14



A measure on X satisfying

Gk = dµ/dµ(k)

is called a G-measure.
It is clear that, for a fixed normalised compatible family G,

the set of G-measures is a convex set inside the set of all T -
quasi-invariant probability measures. The extreme points in this
convex set are T -ergodic.

If there is just one element in this convex set, the unique G-
measure, µ is T -ergodic, and we say that we have a uniquely
ergodic G-measure.
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Proposition 4.2 Let G = {Gn} be a normalised compatible
family of continuous functions. The following are equivalent.
(i) There is a unique G-measure - which is therefore T -ergodic.
(ii) For every f ∈ C(X) the sequence

Ak(f)(x) =
1

|Γk(r(xk))|
∑

γ∈Γk(r(xk))
Gk(γx)f(γx)

converges uniformly to a constant.
(iii) For every f ∈ C(X) the sequence

An(f)(x) =
1

|Γk(r(xk))|
∑

γ∈Γk(r(xk))
Gk(γx)f(γx)

converges pointwise (for every x ∈ X) to a constant.

We generalised the Brown-Dooley conditions, and it’s clear
that the D-Stenflo conditions also generalise to this setting.

On the traditional odometer, Markov measures are clearly of
weak product type.

Hamachi and I gave an explicit construction of a Markov
odometer which is not orbit equivalent to a product measure, but
where the number of vertices grows extremely quickly. I have a
feeling that the rate of growth is somehow a crucial ingredient
in measuring the complexity of the system. Perhaps bounded
B-V systems are all orbit equivalent to products....
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5 Critical dimension and entropy

Let (X,B, µ, T ) be a non-singular conservative ergodic dynami-
cal system with µ(X) = 1. Let

Xα′ = {x ∈ X : lim inf
n→∞

∑n−1
i=0 ωi(x)

nα′ > 0},

and notice that Xα′ is an invariant set. The supremum over
the set of α′ for which µ(Xα′) = 1 is called the lower critical
dimension α of (X,B, µ, T ).

Let

Xβ′ = {x ∈ X : lim sup
n→∞

∑n
i=1 ωi(x)

nβ′ = 0}.

Let β be the infimum of the set {β′ : µ(X ′
β) = 1}, the upper

critical dimension.

Theorem 5.1 (D. and Mortiss) The upper and lower critical
dimensions are invariants for metric isomorphism.

If µ is defined on an infinite product space X, we define the
upper and lower average coordinate entropy of µ:

hAC = lim sup
n→∞

1

log(s(n))

n−1∑
i=0

H(µi) (5)

and

hAC = lim inf
n→∞

1

log(s(n))

n−1∑
i=0

H(µi)

where H(µi) = −
∑l(i)−1

j=0 µi({j}) log µi({j}) is the usual entropy
of the nth coordinate measure.
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Theorem 5.2 (D. and Mortiss) For the odometer action T on
(
∏∞

i=1 Zl(i),⊗∞
i=1µi) and for 2 ≤ l(i) ≤ m < ∞, the lower critical

dimension is given by the formula

α = lim inf
n→∞

−
∑n

i=1 log µi(xi)

log(s(n))
= hAC(µ),

for µ-almost every x.
The upper critical dimension is given by

β = lim sup
n→∞

−
∑n

i=1 log µi(xi)

log s(n)
= hAC(µ)

for µ almost all x ∈ X.

The analogous theorem holds for Markov odometers.
If the AC entropy limit exists then the upper and lower crit-

ical dimensions of the associated product odometer actions are
equal. In this case, we will refer to either as the critical di-
mension. In this case, we also have

lim
n→∞

−
∑n

i=1 log µi(xi)

log(s(n))
= α, a.e.

which is an analogue of the Shannon-MacMillan-Breiman
Theorem for Bernoulli shifts.
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Theorem 5.3 (Katok’s covering theorem) Suppose that µ is an
infinite product measure of critical dimension α. Then we have

α = lim
n→∞

1

log(s(n))
log inf

µ(A)≥1−δ
cn(A)

for all δ ∈ (0, 1).
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We say that an orbit equivalence map Φ : X → Y is a
Hurewicz map if for almost all x,

0 < lim inf

∑n
k=0

dµ◦T k

dµ (x)∑n
k=0

dµ◦Tm(x,k)

dµ (x)
≤ lim sup

∑n
k=0

dµ◦T k

dµ (x)∑n
k=0

dµ◦Tm(x,k)

dµ (x)
< ∞

Theorem 5.4 (i) Hurewicz maps preserve upper and lower crit-
ical dimension.

(ii) A map which preserves upper and lower critical dimension
of all measures is Hurewicz.

We conjecture that, within each fixed orbit equivalence class,
and inside Bratteli-Vershik systems of bounded width, the criti-
cal dimension is a complete invariant for Hurewicz equivalence.
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