The Discovery of Janko's Sporadic Simple Groups

Mathematics and Statistics Colloquium The University of Western Australia

Don Taylor

The University of Sydney

18 August 2016

In January 1965, a surprising announcement was communicated to the international mathematical community.

Zvonimir Janko, a Fellow of the Research School of Physical Sciences within the Institute of Advanced Studies at the Australian National University had constructed a new sporadic simple group.

Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained between 1896 and 1900 by F. N. Cole and G. A. Miller.

Finite simple groups: earliest examples

- ► The cyclic groups of prime order and the alternating groups Alt(n) of even permutations of n ≥ 5 items were the earliest simple groups to be studied (Gauss, Euler, Abel, etc.)
- Evariste Galois knew about PSL(2, p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel.
- Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The 'groupes abéliens' of Jordan are now called symplectic groups and his 'groupes hypoabéliens' are orthogonal groups in characteristic 2.
- *Émile Mathieu* introduced the five groups M_{11} , M_{12} , M_{22} , M_{23} and M_{24} in 1861 and 1873.

The classical groups, and G_2 and E_6

In his PhD thesis Leonard Eugene Dickson extended Jordan's work to linear groups over all finite fields and included the unitary groups.

He published the results in his 1901 book *Linear groups with an exposition of the Galois field theory*.

This established the existence of all finite classical simple groups.

▶ Dickson constructed the finite analogues of the Lie groups of type G_2 and E_6 (1901, 1905 and 1908).

In Janko's announcement (*Proc. Nat. Acad. Sci. USA* 53 (1965)) he mentioned that *Andrew Coppel* had shown that his new group is a subgroup of $G_2(11)$.

William Burnside coined the phrase sporadic simple group.

In Note N of the second edition (1911) of his 1897 book '*Theory of groups of finite order*' Burnside states (in reference to the Mathieu groups):

These apparently sporadic simple groups would probably repay a closer examination than they have yet received.

And here is the enigmatic first sentence of Janko's 1968 paper introducing his second and third groups:

By studying the structure of the five simple groups of Mathieu one observes at once a slight gap in the list of known finite simple groups. In 1955 *Claude Chevalley* showed that to every simple complex Lie algebra $X_n(\mathbb{C})$ of rank *n* and every field *K* there is a corresponding *Chevalley group* $X_n(K)$, which, except for a few special cases, is simple.

In particular, for each finite field of q elements there is finite Chevalley group $X_n(q)$.

This unified the description of the classical linear, odd-dimensional orthogonal, symplectic, even-dimensional orthogonal groups and Dickson's groups:

Lie types $A_n(q)$, $B_n(q)$, $C_n(q)$, $D_n(q)$, $G_2(q)$ and $E_6(q)$.

Chevalley's work produced three new infinite families: $E_7(q)$, $E_8(q)$ and $F_4(q)$ and gave a uniform proof of their simplicity. Chevalley's construction produced most, but not all, of the classical groups; the unitary groups and some orthogonal groups were not included.

In 1958 *Robert Steinberg* extended Chevalley's work to take into account automorphisms of the Lie algebras.

This brought the finite unitary groups and the remaining orthogonal groups into the fold as well as exhibiting new 'twisted' simple groups of types ${}^{3}D_{4}(q)$ and ${}^{2}E_{6}(q)$. (The latter were found independently by *D. Hertzig* and *Jacques Tits.*)

The constructions of Chevalley and Steinberg were not the last of the new families of finite simple groups.

In 1960 *Michio Suzuki* announced the existence of yet another family. He provided explicit matrix generators for his groups, which exhibited them as subgroups of the four-dimensional symplectic groups $Sp(4, 2^{2a+1})$.

Suzuki discovered his groups in the course of determining the doubly transitive groups in which only the identity fixes three points (*Zassenhaus groups*).

He also showed that they are the only finite simple groups in which the centraliser of every involution is a 2-group.

Almost immediately (in 1960) *Rimhak Ree* (and Steinberg) saw that the Suzuki groups were the fixed points of an automorphism of $Sp(4, 2^{2a+1})$ and furthermore they could be constructed by a variant of Steinberg's methods.

The groups $G_2(3^{2a+1})$ and $F_4(2^{2a+1})$ have automorphisms similar to the automorphism of $Sp(4, 2^{2a+1})$ and thus Ree constructed two new infinite families of finite simple groups: ${}^2G_2(3^{2a+1})$ and ${}^2F_4(2^{2a+1})$, now known as *Ree groups*.

(The group ${}^{2}F_{4}(2)$ is not simple. But in 1964 *Tits* showed that its derived group is a new simple group.)

It was by studying the Ree groups of type ${}^{2}G_{2}(3^{2a+1})$ that Janko was led to the discovery of J_{1} , his first sporadic group.

Definition

An *involution* is an element of order 2. The subgroup of elements which commute with the involution is its *centraliser*.

At the beginning of the 20th century Burnside had suspected that all (non-abelian) finite simple groups should contain involutions.

In Note M of his 1917 book he expressed this as follows:

The contrast that these results shew between groups of odd and even order suggests inevitably that simple groups of odd order do not exist. A discussion of the possibility of their existence must in any case lead to interesting results.

In 1962 this result would be known as the Odd Order Theorem.

It was *Richard Brauer* who thought that the non-abelian simple groups could be classified in terms of their centralisers of involutions, which necessarily exist if Burnside were right.

At the 1954 ICM Brauer reported that as a consequence of results of his with his student K. A. Fowler there are only a finite number of simple groups of even order with an involution centraliser isomorphic to a given group.

At the same ICM Brauer reported his classification of PSL(3,q) and M_{11} by the centraliser of an involution and a beautiful characterisation of PSL(2,q), obtained independently by *Suzuki* and *G. E. [Tim] Wall*, which was published in 1958..

In his 1959 PhD thesis *John Thompson* proved a long-standing conjecture of Frobenius and later that year he began a collaboration with *Walter Feit* which, in 1962, resulted in their famous proof of the Odd Order Theorem (255 pages in the Pacific Journal of Mathematics).

Thus the program outlined by Brauer had a realistic chance of success.

In 1962 it was widely believed that the list of finite simple groups was complete and, except for the five groups of Mathieu, they lay in infinite families with the wonderful structure of Lie algebras supporting them.

So Brauer's program had a well defined plan of attack: look at the centralisers of involutions.

In 1960, *Bernhard Neumann* was appointed as the foundation Chair of Mathematics in the Research School of Physical Sciences of the Australian National University but he did not arrive permanently until 1962.

Over the next few years he was joined by a bevy of remarkable mathematicians — including his wife *Hanna Neumann*, his former students *Mike Newman* (1961) and *Laci Kovács* (1963) and, later, his former colleague from Manchester, *Kurt Mahler*.

Zvonimir Janko was appointed to a Research Fellowship (a 3-year appointment) in the Research School of Physical Sciences on 2 April 1962. He was promoted to Fellow (a permanent position) on 1 July 1964.

Zvonimir Janko was born in 1932 in Bjelovar, Croatia (then Yugoslavia). He studied mathematics at the University of Zagreb.

His first teaching position was at the high school in Lišticia (now called Široki Brijeg) in Bosnia and Herzegovina where he taught physics.

He gained his PhD from the University of Zagreb in 1960 under the supervision of Professor Vladimir Devidé who visited him at Monash University in 1967.

During his student years Janko had participated in a visit to the grave of the 19th century Croation politician Dr Ante Starčević.

As a consequence of this display of Croation nationalism he was suspended from his university for two years.

Despite receiving his doctorate in 1960 and publishing papers while working at Lišticia the accusation of Croation nationalism meant he was unable to find an academic position in Yugoslavia. Consequently he moved to Germany and from there obtained a position in Australia.

He published his first paper in 1959 and by the time he arrived at the ANU he had 12 publications.

Janko in 1964

Janko was in correspondence with some of the American mathematicians who were working on the classification of all finite simple groups.

An obvious first step in the classification was to classify the finite simple groups with abelian Sylow 2-subgroups.

Indeed, *John Walter* in Illinois was well advanced on that very problem and was sure that the complete proof was not far off.

Janko thought he could prove a small step on the way towards that goal, namely to classify the finite simple groups with an abelian Sylow 2-subgroup *and* an involution whose centraliser is the direct product of the involution and PSL(2, q).

He thought that the only possibilities would be Ree groups of type ${}^{2}G_{2}$.

John Thompson in Chicago and Janko at the ANU corresponded.

Thompson agreed with Janko that they should produce a joint paper on the subject with Janko to write it.

Chih-Han Sah had already published a special case of this result where he quoted an unpublished result of Thompson claiming that if q > 3, then $q = 3^{2n+1}$ for some *n*.

Accordingly Janko set about writing the paper which he would send to Thompson for publication.

But almost immediately he found that he could not eliminate the first and simplest situation which could arise, namely when the centraliser of the involution t was $\langle t \rangle \times PSL(2,5)$.

Janko did not inform Thompson of the problems he was having with the easiest case but the more he worked on it the more it seemed that no contradiction was possible and that there may have been another group out there whose existence had not been suspected. *Terry Gagen* arrived in Canberra in January 1964 and had been assigned to Janko as his first PhD student.

The first problem which Janko suggested he consider was the problem in which John Walter was very advanced, namely the problem of determining the simple groups whose Sylow 2-subgroups were abelian.

That morphed into a more accessible problem as time went by.

Meanwhile Janko continued to work on the q = 5 case of his centraliser of involution problem.

Eventually, he knew enough about the group-if it existed-that

- ▶ it would have $175560 = 2^3 \times 3 \times 5 \times 7 \times 11 \times 19$ elements;
- ▶ it would be generated by a collection of 7 × 7 matrices with coefficients in Z₁₁.

Janko had produced a set of generators which had to work, *if the group existed*.

Indeed, if they did not work, then the group did not exist and John Thompson's assertion that q must be a power of 3 would have been correct.

Matrix multiplication

Janko knew that the normaliser H of a Sylow 2-subgroup was a group of order $2^3 \times 3 \times 7$ and he represented it as a group of 7×7 matrices over \mathbb{Z}_{11} . He also knew the matrix form of an involution $\tau \notin H$ that centralised an element of order 3 and inverted an element of order 7.

What was required was to multiply those matrices out until all possibilities were listed.

That would be at least 175 560 matrices \cdots an impossibly large number for a computer at that time.

Fortunately there was a student at the ANU, a year or two in advance of Terry, namely *Martin Ward*, who knew about programming computers, and who was able to get the ANU's computer to multiply matrices modulo 11.

Martin and Terry set aside several nights in which to do this.

Martin began his PhD with Hannah Neumann in 1963 and in 1964 was working in the Geophysics Department doing computations in geophysics and geomagnetism.

He had access to the IBM 1620 in the Research School of Physical Sciences with a memory size of 20K decimal digits. Its native arithmetic was decimal but the addition and multiplication tables were held in memory. Martin reprogrammed them to work modulo 11.

Nevertheless multiplying the 7×7 matrices of Janko's group was manually intensive. The matrices were input on cards and then the output was checked by hand.

Martin recalls reams of paper across his living room floor.

Luckily, it was not necessary to produce all 175560 matrices. First of all, if A is Janko's matrix of order 7 in H and B the product of the involution in H and the matrix of τ , then the order of B is 5, AB^2 has order 11 and A^3B has order 19. Thus the order of the group they generate is a multiple of 175560.

So all they needed to do was to show that the order of the group generated by the matrices was no more than twice that number.

This was accomplished by working with the 11 double cosets of H.

Terry and Martin worked for several days and nights multiplying matrices modulo 11 and by the end of the last night—Terry's memory is that dawn was just breaking—they had found all the elements they needed. With the other information they had, they knew that the new simple group existed as Janko had suspected.

At the time, there were no mobile phones and they could not contact Janko at home asleep in bed. Terry recalls that they must have waited until Janko arrived at the department.

He remembers shaking his hand and saying "the group exists!"

The first announcement of the group to the world was contained in a four page typescript that Janko sent to Professor dr. Reinhold Baer in October or November 1964.

Janko in 2007

Of course, even before the completion of these calculations, it seemed very clear that the group really existed and Janko had written to Thompson to say that he was having problems with the 'q = 5 case'.

Thompson replied that he had a proof eliminating that case in front of him as he wrote and that he would take care of it, if Janko couldn't!

But by the time Thompson's letter arrived in Canberra, Janko had the group.

Janko asked whether it was possible to print out the entire 175 560 matrices and mail them to Thompson, but of course that idea came to nothing, though it was not impossible at all!

The Ree group problem

Fresh from his discovery and construction of the new sporadic simple group Janko continued working on the characterisation of Ree groups of characteristic 3.

In January 1965 Janko and Thompson had completed a joint paper going someway toward a characterisation. The Ree groups satisfied their conditions but they were unable to prove that there were no others.

Ultimately it came down to proving that a certain field automorphism σ of the field of $q = 3^{2n+1}$ elements satisfies $\sigma^2 = 3$. This problem remained open until 1980 when *Enrico Bombieri* proved that $\sigma^2 = 3$ provided n > 41.

The remaining cases were dealt using computer programs written by *David Hunt* and *Andrew Odlyzko*. Janko spent a considerable amount of time on this problem and even set it as an exercise in one of his classes!

In 1961 Monash University saw its first students and *Kevin Westfold* took up his appointment as the inaugural professor of Applied Mathematics; in the following year he became Dean of Science.

Gordon Preston, who arrived in 1963, was the first professor of Pure Mathematics.

Preston, with the support of Westfold, immediately set about establishing a world class department of mathematics and statistics. By 1967 he had appointed five professors of mathematics and statistics. In those days this was unprecedented.

Zvonimir Janko was one of Preston's appointments. He arrived at Monash in August 1965, moving from the position of Fellow at the ANU to a full professorship. At Monash Janko looked at hundreds if not thousands of possible centralisers of involutions and was rewarded with two new examples of sporadic simple groups.

The smallest of these (J_2) was constructed by *Marshall Hall* and its uniqueness was proved by *David Wales*.

Janko discovered J_2 and J_3 in 1966. In September 1967 Marshall Hall presented his construction for J_2 at a group theory conference in Oxford.

Donald Higman and *Charles Sims* were in the audience and by next morning they had used the same technique to construct another new simple group.

In 1967 *Dieter Held* had joined the Monash department and joined the program, first characterising the alternating groups of degrees 8 and 9 be the centraliser of an involution and then characterising the alternating group of degree 10 and the Mathieu group M_{22} .

In 1968 he had returned to Germany but I recall Janko bringing one of his letters to an advanced group theory class and reading it to us.

Held was studying groups with a centraliser of an involution isomorphic to those in M_{24} . He had shown that there were three possibilities for the fusion of involutions.

One led to PSL(5,2), another led to M_{24} but he could not eliminate the third. Janko said "Well, he's found a new simple group."

The last sporadic simple group

In 1968 Janko went to the IAS, Princeton, briefly back to Monash and then, in 1969, to Ohio State University in Columbus and finally, in 1972, to Heidelberg until his retirement in 2000.

Janko thought it would be worthwhile looking for simple groups with an involution $\langle t \rangle$ whose centraliser is a non-splitting extension of $\langle t \rangle$ by Alt(*n*) for some n > 8. He showed that no such group exists for n = 9 and John Thompson showed that there are no groups with $n \ge 12$.

But it was Thompson's student Richard Lyons who got the prize. He discovered that n = 10 is not possible but for n = 11 he provided compelling evidence for a new simple group. The existence and uniqueness of Lyons' group was proved by Charlie Sims, using a computer.

There was one more group discovered by Janko. That was in 1975 and it turned out to be the last of the 26 sporadic simple groups.

Janko at home in Široki-Brijeg

