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Abstract. The paper is a discussion of Krahn’s proof of the Rayleigh
conjecture that amongst all membranes of the same area and the same
physical properties, the circular one has the lowest ground frequency.
We show how his approach coincides with the modern techniques of
geometric measure theory using the co-area formula. We furthermore
discuss some issues and generalisations of his proof.
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1. Introduction

In his book The Theory of Sound [36] first published in 1877 Lord Rayleigh
made a famous conjecture:

If the area of a membrane be given, there must evidently be some
form of boundary for which the pitch (of the principal tone) is the
gravest possible, and this form can be no other than the circle. . . .

The conjecture is supported by a table of explicit values for the ground fre-
quency of a membrane. We reproduce the table from the 1945 Dover edition
[35] in Figure 1. On that table the circle clearly exhibits the lowest value.
Rayleigh further provides a rather lengthy proof in case of a near circle using
perturbation series involving Bessel functions.

The conjecture remained unproved for a very long time. Courant [11]
obtained a related but weaker result, namely that the circle minimises the
ground frequency amongst all membranes with the same circumference. In
1923 Faber published a proof in the Sitzungsbericht der bayerischen Akademie
der Wissenschaften [17]. Independently, a proof by Krahn appeared in 1925
in Mathematische Annalen [25]. According to [28] the result was intended
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Figure 1. Rayleigh’s table showing explicit values for the
ground frequency of membranes of various shapes

to be the doctoral thesis of Krahn at the University of Göttingen under the
direction of Richard Courant. However, because Faber had announced his
proof already, it was not deemed sufficient for the degree to be awarded.
Krahn subsequently provided a proof of the conjecture in higher dimensions
in 1926, for which he got his doctorate. To make sure his result is published
fast, Krahn submitted it to Acta Comm. Univ. Tartu (Dorpat) [26], a journal
run by the University of Tartu in Estonia where Krahn had studied.

The main obstacle for the proof in higher dimensions was that the
isoperimetric inequality between surface area and volume was not available
at the time. Hence, the bulk of Krahn’s paper [26] is devoted to a proof of
the isoperimetric inequality using induction by the dimension. The proof of
Rayleigh’s conjecture does not occupy much space. Usually the proof of the
isoperimetric inequality in higher dimensions is attributed to Erhard Schmidt
[38]. The Review of that paper in Zentralblatt (Zbl 0020.37301) says “Die Ar-
beit enthält den ersten strengen Beweis für die isoperimetrische Ungleichheit
in einem Euklidischen Raum von mehr als drei Dimensionen.”1 (see also the
comments in [28, p. 89]). We refer to [28] for an English translation of Krahn’s
work and more on his biography. In Chapter 6 that book also contains a dis-
cussion of Krahn’s proof, but with a rather different emphasis.

Both proofs, the one by Faber and the one by Krahn employ a similar
idea. However, Faber implements it by discretising the integrals involved and
then passes to the limit, whereas Krahn uses ideas now part of geometric mea-
sure theory, in particular the co-area formula. Krahn’s techniques are now

1“The paper contains the first rigorous proof of the isoperimetric inequality in Euclidean
space of more than three dimensions.”
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widely used and have been rediscovered again. For instance, one key argu-
ment in the celebrated paper [40] by Talenti on the best constants of Sobolev
inequalities recovers exactly a generalised version of Krahn’s approach. Fi-
nally, Krahn’s argument provides the uniqueness of the minimising domain,
whereas Faber’s approximation argument does not.

The result is now referred to as the Rayleigh-Faber-Krahn inequality or
simply the Faber-Krahn inequality for the first eigenvalue λ1(Ω) of

−∆u = λu in Ω, u = 0 on ∂Ω, (1.1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain. It is well known that λ1(Ω)
is simple and the eigenfunction ψ can be chosen positive. The result as we
know it today can be stated as follows.

Theorem 1.1 (Rayleigh-Faber-Krahn inequality). Let Ω ⊆ RN be a bounded
domain and Ω∗ an open ball of the same volume. Then λ1(Ω) ≥ λ1(Ω∗) with
equality if and only if Ω is a ball except possibly for a set of capacity zero.

Krahn assumes that Ω has a piecewise analytic boundary, but this is not
necessary for his proof to work. The uniqueness of the minimising domain is
discussed in Remark 5.1. In [26, Section 4] Krahn also proves that the union
of two disjoint discs of the same area minimises the second eigenvalue, a fact
sometimes attributed to Szegö as remarked in [21, Section 4.1].

The above theorem serves as a prototype for a huge range of related
problems more generally called isoperimetric inequalities. It also serves as a
prototype for a shape optimisation problem such as those in [7]. Despite the
large number of known results there are still many challenging conjectures in
the area too numerous to list here. For references and more on the history of
the problem the survey articles by Osserman [30] and Payne [31] are still a
good source. A classic is also Bandle’s book [4]. More recent surveys include
[3, 21]. The old classic is the book [33] by Pólya and Szegö. Similar problems
are also studied on manifolds, see for instance the book by Chavel [10].

The purpose of these notes is to look at Krahn’s original proof, translate
it into more modern terminology and see how the idea works under weaker
assumptions. In particular we see that Krahn is using an identity equivalent
to what is now known as the co-area formula. We also fill in the missing
technical detail. The basic steps are as follows:

1. Introduce a coordinate transformation which turns out to be equivalent
to the co-area formula from geometric measure theory.

2. Apply this coordinate transformation to rewrite ‖ψ‖22, ‖∇ψ‖22 and F (t) :=∫
Ut

1 dx, where Ut = {x ∈ Ω: ψ > t}.
3. Using the isoperimetric inequality derive a lower bound for the first

eigenvalue of (1.1) in terms of F (t).
4. Rearrange the eigenfunction to get a radially symmetric function, and

observe that F (t) is the same as the original function. Use the previous
step and the fact that the minimum of the Rayleigh quotient is the first
eigenvalue.

5. Argue that λ1(Ω) = λ1(Ω∗) implies that Ω is a ball.
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We discuss and comment on each step separately, and then in a final section
we show how to generalise the arguments for bounded domains in RN . Note
that Steps 1–4 do not depend on looking at an eigenvalue problem. The
results apply to Schwarz symmetrisation of functions in general and can be
used for other purposes like finding the best constant in Sobolev inequalities
as in [40] or for nonlinear problems such as [14].

2. Heuristic derivation of the co-area formula

In this section we discuss a coordinate transformation used in the first part of
Krahn’s paper [25, pages 98/99], and which appears in a more disguised form
in [26] in higher dimensions. We show that this transformation is essentially
the co-area formula. Krahn applies it to the first eigenfunction ψ > 0 of (1.1)
and starts with the observation that it has at most finitely many critical
points, that is, points where ∇ψ = 0. Hence there are at most finitely many
levels t1, . . . , tn such that

St := {x ∈ Ω: ψ(x) = t} (2.1)

is not a smooth level curve in Ω (Krahn uses z for the levels). Consider
now a point (x, y) ∈ Ω so that ∇ψ(x, y) 6= 0 and set t = ψ(x, y). The
implicit function theorem implies that a smooth level curve passes through
that point and all points nearby. Hence a neighbourhood of that point can
be parametrised by Φ(s, t), where s is arc length on the level curve and t
is the level in the direction of the gradient orthogonal to the level curve St.
Locally the coordinate transformation is as shown in Figure 2. If we use the

s

t

∆s

∆t Φ
∆t

|∇ψ|

∆s

x

y

St

Figure 2. Local coordinate transformation flattening the
level curves

transformation formula for integrals to write an integral over Ω as integral
with respect to the coordinates (s, t), then we need the determinant of the
Jacobian matrix JΦ of Φ

D := |det JΦ(s, t)|

as defined in Krahn’s paper. The Jacobian determinant of Φ−1 is

|det JΦ−1(s, t)| = |det J−1
Φ (s, t)| = 1

D
= |∇ψ| (2.2)
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Graphically, in Figure 2, we can see why: The line element ∆s remains un-
changed whereas in the direction of the gradient (perpendicular to St) the
line element ∆t is stretched by the factor 1/|∇ψ|. The reason is that |∇ψ|
is the slope of the graph of ψ in the direction of ∇ψ. Hence the rectangle of
side lengths ∆s and ∆t is transformed into a small rectangle of side lengths
∆s and ∆t

|∇ψ| . For a given measurable function u ∈ L1(Ω) we can then write∫
Ω

u dx =

∫
R

∫
St

uD ds dt. (2.3)

Krahn applies this formula in the special cases u ≡ 1, u = |ψ|2 and u = |∇ψ|2.
He also writes the line integral by assuming St is parametrised by arc length
as an integral from zero to L(z), the length of the curve St for t = z. In our
exposition we write the line integral without a particular parametrisation and
replace 1/D by |∇ψ|. If we rewrite (2.3) using (2.2), then for any measurable
function g : Ω→ [0,∞)∫

Ω

g|∇ψ| dx =

∫ ∞
0

∫
St

g ds dt. (2.4)

The reasoning above is also valid in higher dimensions. Then St is a hyper-
surface and ds is replaced by the surface measure dσ on St. Moreover, we can
admit sign changing measurable functions g if g|∇ψ| is integrable. However, it
seems not completely clear that this local transformation can be made global
by subdividing the domain and dealing with the exceptional levels where ∇ψ
vanishes, unless ψ is very smooth.

As pointed out in [31, page 453] it was unclear at the time whether the
above transformation can be properly justified. The formula (2.4) however
is a special case of the co-area formula due to Federer [18, Theorem 3.1].
It is valid if ψ is Lipschitz continuous on Ω, and it is not required that ψ
be zero on ∂Ω. In that case, the usual surface measure has to be replaced
by the (N − 1)-dimensional Hausdorff measure. Standard references for the
co-area formula include Federer’s book on geometric measure theory [19] and
the book [16] by Evans and Gariepy. The latter is more accessible. In [29,
Section 1.2.4] Maz’ya gives a proof of (2.4) for ψ ∈ C∞(Ω) based on Sard’s
lemma and the divergence theorem. More general versions of the co-area
formula for functions of bounded variation appear for instance in [1, 20].

3. Consequences of the co-area formula

Let ψ : Ω→ [0,∞) be Lipschitz continuous and St the level surface as defined
in (2.1). If g : Ω→ [0,∞) is measurable, then the co-area formula implies∫

Ω

g

|∇ψ|+ ε
|∇ψ| dx =

∫ ∞
0

∫
St

g

|∇ψ|+ ε
dσ dt

for all ε > 0. Letting ε→ 0, by the monotone convergence theorem∫
Ω

g dx =

∫ ∞
0

∫
St

g

|∇ψ|
dσ dt. (3.1)
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As Krahn did, we can apply the above formula to the level sets

Ut := {x ∈ Ω: ψ(x) > t}
and the constant function g ≡ 1. We then get

F (t) :=

∫
Ut

1 dx =

∫ ∞
t

∫
Sτ

1

|∇ψ|
dσ dτ =

∫ ∞
t

∫
Sτ

Ddσ dτ. (3.2)

Since Ω has bounded measure the above shows that the function

t→
∫
St

1

|∇ψ|
dσ

is integrable on (0,∞) and therefore F is absolutely continuous. Hence F is
differentiable almost everywhere and

F ′(t) = −
∫
St

1

|∇ψ|
dσ > 0 (3.3)

for almost all t ∈ [0, ‖ψ‖∞) (see [37, Theorem 8.17]). The strict inequality
comes since F (t) <∞ implies that |∇ψ| > 0 on St for almost all t ∈ (0, ‖ψ‖∞)
because otherwise the integral on the right hand side of (3.2) would not be
finite. Krahn does not argue rigorously here, but just differentiates F to
get the above expression for F ′(t). From the above and (3.1), Krahn gets a
formula for ‖ψ‖22 and ‖∇ψ‖22, namely

‖ψ‖22 =

∫
Ω

|ψ|2 dx =

∫ ∞
0

τ2

∫
Sτ

1

|∇ψ|
dσ dτ =

∫ ∞
0

τ2F ′(τ) dτ (3.4)

and

‖∇ψ‖22 =

∫
Ω

|∇ψ|2 dx =

∫ ∞
0

∫
Sτ

|∇ψ| dσ dτ. (3.5)

4. A lower estimate for the Dirichlet integral

The next step in Krahn’s proof is a lower estimate for the Dirichlet integral
‖∇ψ‖22. We again assume that ψ is a non-negative Lipschitz function on
Ω ⊂ R2 because the argument Krahn gives does not rely on analyticity or
the fact that ψ is the first eigenfunction of (1.1). Krahn argues with the
arithmetic-geometric mean inequality 4a2 ≤ (ξ + a2/ξ)2 for all a ≥ 0 and
ξ > 0. However, it seems easier to argue with Young’s inequality

a ≤ 1

2ξ
+
a2ξ

2

valid for all a ≥ 0 and ξ > 0. Note that there is equality if and only if a = ξ.
Applying this for a = −F ′(t)/σ(St) and ξ = |∇ψ| and integrating over St we
get

− 2F ′(t) ≤
∫
St

1

|∇ψ|
dσ +

( F ′(t)
σ(St)

)2
∫
St

|∇ψ| dσ

= −F ′(t) +
( F ′(t)
σ(St)

)2
∫
St

|∇ψ| dσ,
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where we used (3.3) for the last equality. We have used that ∇ψ 6= 0 on St
for almost all t > 0 as proved in the previous section. Rearranging we get the
key inequality

−
[
σ(St)

]2
F ′(t)

≤
∫
St

|∇ψ| dσ (4.1)

for almost all t > 0 with equality if and only if −F ′(t)/σ(St) = |∇ψ| almost
everywhere on St. In particular we have equality if ψ is radially symmet-
ric, and equality implies that |∇ψ| is constant on St. We then apply the
isoperimetric inequality [

σ(St)
]2 ≥ 4πF (t) (4.2)

for almost all t and therefore

− 4π
F (t)

F ′(t)
≤
∫
St

|∇ψ| dσ. (4.3)

If we integrate the above inequality we get, using (3.5),

− 4π

∫ ∞
0

F (t)

F ′(t)
dt ≤

∫ ∞
0

∫
St

|∇ψ| dσ dt = ‖∇ψ‖22. (4.4)

Applied to the first eigenfunction of (1.1) we get the following estimate on
the first eigenvalue.

Proposition 4.1. Let λ1(Ω) denote the first eigenvalue of (1.1) and ψ a pos-
itive eigenfunction normalised so that ‖ψ‖22 = 1. Then

λ1(Ω) = ‖∇ψ‖22 ≥ −4π

∫ ∞
0

F (t)

F ′(t)
dt (4.5)

with equality if and only if Ut is a disc and |∇ψ| is constant on St for almost
all t > 0.

5. The symmetrisation argument

We now assume that ψ is the first eigenfunction of (1.1) normalised so that
ψ > 0 and ‖ψ‖2 = 1. Krahn constructs a new function ψ∗ replacing the sets
Ut by a disc U∗t of the same area. This is what we now call the Schwarz
symmetrisation of ψ. The precise definition is

ψ∗(x) := sup{t ∈ R : |Ut| > π|x|2},

but Krahn is much less formal in his paper. Since
⋃
s>t Us = Ut the function

t 7→ F (t) is right continuous. From that it is not hard to deduce that F (t) =
|U∗t | if we set

U∗t = {x ∈ Ω∗ : ψ∗(x) > t}.
Hence the right hand side of (4.5) is the same for ψ and ψ∗. However, since
ψ∗ is radially symmetric Krahn gets

λ1(Ω) ≥ −4π

∫ ∞
0

F (t)

F ′(t)
dt = ‖∇ψ∗‖22 ≥ λ1(Ω∗),
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where the last inequality follows since λ1(Ω) is the minimum of the Rayleigh
quotient and ‖ψ∗‖2 = ‖ψ‖2 = 1 by (3.4). Hence

λ1(Ω) ≥ λ1(Ω∗)

as claimed. If there is equality, then from the above

λ1(Ω) = −4π

∫ ∞
0

F (t)

F ′(t)
dt = ‖∇ψ‖22

and so Proposition 4.1 implies that almost all level sets Ut are nested discs
if Ω has continuous boundary. Hence Ω =

⋃
t>0 Ut is a disc as well.

Remark 5.1. The above argument shows that ‖∇ψ‖2 = ‖∇ψ∗‖2. There are
theorems which ensure that this implies that ψ = ψ∗ almost everywhere (see
[6]). We do not make use of these. We show that Ω is the union of nested balls
and therefore a ball. It is irrelevant whether or not ψ is radially symmetric.
However, the radial symmetry of ψ follows from the simplicity of the first
eigenvalue once we know Ω is a ball.

The uniqueness of the minimising domain is not stated in many standard
references because sources like [33] obtain the inequality ‖∇ψ∗‖2 ≤ ‖∇ψ‖2
in a different way. If it is stated, then often not with specific regularity as-
sumptions on Ω. We refer to [22, pages 92/93] for a discussion.

If Ω is an arbitrary bounded open set, then the equality of the eigenval-
ues implies that Ut and therefore Ω is a ball up to a set of (N−1)-dimensional
Hausdorff measure zero. Equality up to a set of capacity zero then follows
from the main result in [2]. An alternative proof of uniqueness appears in
[15], including a characterisation of all symmetric operators in divergence
form minimising the first eigenvalue.

We have seen that at the time it was not clear whether or not the co-area
formula can be justified. Even if it could be justified for analytic functions,
it was not clear whether or not this applies to ψ∗ as well. To avoid these
issues Tonelli gave a slightly different proof under weaker assumptions on the
domain and the function by showing that the surface area of the graph of ψ
is larger than that of the graph of ψ∗. He then also obtained (4.4) (see [41,
page 261]). A similar approach is taken by Pólya [32, 34]. The knowledge and
techniques up to 1950 is collected in Pólya and Szegö’s book [33].

For Krahn’s argument to work we only need that ψ∗ is Lipschitz contin-
uous because then the co-area applies. The Lipschitz continuity of ψ∗ follows
relatively easily from the Brunn-Minkowski inequality as for instance shown
in [39, Lemma 1] or [4, Lemma 2.1] or [27] (for one dimension see also [22,
Lemma 2.3]). For general properties of Schwarz symmetrisation see for in-
stance [4, 22, 24, 27, 40].

6. Modification for higher dimension

As mentioned in Section 1.1, Krahn proves Theorem 1.1 also in dimensions
N ≥ 3 in his PhD thesis published in [26]. The main part of Krahn’s paper
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[26, Section 2] is to establish the isoperimetric inequality

σ(∂U) ≤ C(N)|U |1−1/N (6.1)

for sets U ⊆ RN with piecewise analytic boundary, where |U | is the measure
of U and σ(∂U) the surface area of ∂U . The isoperimetric constant c(N) is
such that the above is an equality if and only if U is a ball. In [26, Section 3]
Krahn then proves (4.1), again by an approach equivalent to using the co-area
formula. In his writing, for a the problem in n dimensions,

k∑
i=1

∫
Bi(u)

M2
i

Di
dvi1 . . . dvin−1 ≥ −

b(u)2

Q′(u)

with equality if and only if Ut is a ball. (Note that M2
i /D

2
i should be M2

i /Di

in the integrals in [28, pp 170–172]). In our notation u = t, b(u) = σ(St) and
Q(u) = F (t) = |Ut|. Moreover, St is written as a disjoint union of graphs of
analytic functions parametrised by vij , j = 1, . . . n− 1, over Bi(u). As shown
earlier in Krahn’s paper, Mi/Di = |∇ψ|, and Midv1 . . . dvn−1 is the surface
measure dσ on St. Hence the above inequality corresponds exactly to (4.1).
Applying (6.1) we then get∫

St

|∇ψ| dσ ≥ −
[
σ(St)

]2
F ′(t)

≥ −c(N)2F (t)2(1−1/N)

F ′(t)

for almost all t > 0. Integrating, we get an estimate similar to (4.5), that is,

‖∇ψ‖22 ≥ −
∫ ∞

0

[
σ(St)

]2
F ′(t)

dt ≥ −c(N)2

∫ ∞
0

F (t)2(1−1/N)

F ′(t)
dt (6.2)

with equality in the second estimate if and only if St is a sphere for almost all
t > 0. Hence, if ψ∗ is the symmetrisation of ψ, then similarly as in Krahn’s
proof in two dimensions

λ1(Ω) = ‖∇ψ‖22 ≥ −c(N)2

∫ ∞
0

F (t)2(1−1/N)

F ′(t)
dt = ‖∇ψ∗‖22 ≥ λ1(Ω∗).

The uniqueness of the minimising domain follows as in Section 5. We also
note that Krahn’s approach essentially coincides with Talenti’s key argument
in finding the best constant in the Sobolev inequality, see [40, pages 361/362].
The inequality (21) in Talenti’s paper is a generalisation of (6.2) for arbitrary
p ∈ (1,∞). However, in his paper there is no reference to Krahn’s work, which
suggests that Talenti was not aware of Krahn’s approach. Note also that
Talenti’s generalisation gives a proof of Theorem 1.1 for the first eigenvalue
of the p-Laplace operator for p ∈ (1,∞).

7. Concluding Remarks

The basic idea of Krahn’s proof is to get an estimate of the form λ1(Ω) ≥
L(ψ), where L(ψ) is a function of ψ only depending on the volume of the level
sets Ut with equality if ψ is radially symmetric. The way to achieve this is to
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use the co-area formula to link to the geometry of the domain via properties
of the level sets Ut.

That idea also works for other problems, as for instance the analogous
problem for the elastically supported membrane, a conjecturex that seems to
go back to Krahn as well. The boundary conditions are

∂ψ

∂ν
+ βψ = 0

on ∂Ω, where ν is the outer unit normal and β ∈ (0,∞) constant. For Dirich-
let boundary conditions we wrote the eigenvalue in terms of the Dirichlet
integral. This does not seem to work in case of Robin boundary conditions
(the elastically supported membrane). The reason is that the eigenfunction
is not constant on ∂Ω and therefore St is not in general the boundary of Ut.
Hence (6.2) does not apply.

The remedy is to write λ1(Ω) in terms of a functional involving the
whole boundary of Ut, not just the part inside Ω. More precisely,

λ1(Ω) =
1

F (t)

(∫
∂Ut∩Ω

|∇ψ|
ψ

dσ +

∫
∂Ut∩∂Ω

β dσ −
∫
Ut

|∇ψ|2

ψ2
dx
)

for almost all t > 0. Then a similar idea can be applied. The first success-
ful attempt is the proof by Bossel [5] in two dimensions using ideas from
extremal length in complex analysis, but there were still a lot of technical
issues to be resolved. Higher dimensions, more general domains and the p-
Laplace operators are treated in [8, 9, 12, 13, 15]. The common feature with
Krahn’s approach is that the co-area formula provides the essential link to
the isoperimetric inequality.

Finally we note that for the above boundary conditions the minimising
domain for the second eigenvalue is the union of equal balls as shown in [23].
The idea of the proof is similar to that used for Dirichlet boundary conditions.
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1994, 1995.

[3] M. S. Ashbaugh and R. D. Benguria, Isoperimetric inequalities for eigen-
values of the Laplacian, in: Spectral theory and mathematical physics: a
Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math.,
volume 76, pp. 105–139, Amer. Math. Soc., Providence, RI, 2007.

[4] C. Bandle, Isoperimetric inequalities and applications, Monographs and Stud-
ies in Mathematics, volume 7, Pitman, Boston, Mass., 1980.



Krahn’s proof of the Rayleigh conjecture revisited 11
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