
Group representation theory Lecture 13, 8/9/97

Let us review the situation we have been discussing in the last few lectures. Given a finite group
G, we started by choosing irreducible complex representations R(1), R(2), . . . , R(s) such that R(i)

and Rj) are not equivalent if i 6= j. We showed that
∑
k d

2
k ≤ |G|, where dk is the degree of R(k).

This limits the number of pairwise inequivalent irreducible complex representations G can have.
If we now suppose that we have chosen the above sequence of representations to include as many
representations as possible then it will still be a finite sequence, and every irreducible complex
representation of G will have to be equivalent to exactly one of the R(i). We express this by saying
that R(1), R(2), . . . , R(s) constitute a full set of irreducible complex representations of G.

Given a full set of irreducible representations of G as above, let χ(k) be the character of R(k).
That is, if the coordinate functions of Rk) are denoted by R(k)

ij , then χ(k) =
∑dk
j=1R

(k)
jj . We saw in an

assignment question that equivalent representations have the same character, the reason being that
if R, S:G → GL(d,C) are equivalent then there exists a T ∈ GL(d,C) such that Sg = T−1(Rg)T
for all g ∈ G, and this gives

trace(Sg) = trace(T−1(Rg)T ) = trace(Rg) for all g ∈ G.

So the character of any irreducible complex representation of G must be equal to one of the
characters χ(1), χ(2) . . . , χ(s).

We have also proved the orthogonality of coordinate functions:

1
|G|

∑
g∈G

(R(k)
pmg)(R(l)

nq(g
−1)) = (1/dk)δklδnmδpq

for all meaningful values of k, l, p, m, n and q. Putting p = m and q = n and summing over m
from 1 to dk and n from 1 to dl gives

1
|G|

∑
g∈G

( dk∑
m=1

R(k)
mmg

)( dl∑
n=1

R(l)
nn(g−1)

)
= (1/dk)δkl

dk∑
m=1

dl∑
n=1

δnmδmn.

The quantity on the right hand side is zero unless l = k, in which case
∑dk
m=1

∑dk
n=1 δnmδmn

evaluates to dk (since the dk terms with n = m each contribute 1 and the other terms are 0). Thus

1
|G|

∑
g∈G

χ(k)(g)χ(l)(g−1) = δkl.

Suppose now that χ and φ are characters of irreducible complex representations R and S. As
explained above, we know that R is equivalent to R(k) and S to R(l) for some k and l. This gives
χ = χ(k) and φ = χ(l). Since R(k) and R(l) are equivalent if and only if k = l, it follows that R and
S are equivalent if and only if k = l. If they are not equivalent then

1
|G|

∑
g∈G

χ(g)φ(g−1) =
1
|G|

∑
g∈G

χ(k)(g)χ(l)(g−1) = 0,

and if they are equivalent then

1
|G|

∑
g∈G

χ(g)φ(g−1) =
1
|G|

∑
g∈G

χ(k)(g)χ(k)(g−1) = 1.
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Thus we have proved the following theorem.

Theorem. If χ and φ are characters of irreducible complex representations of the finite group G
then R and S are equivalent if and only if χ = φ. Furthermore,

∑
g∈G

χ(g)φ(g−1) =
{

1 if χ = φ,
0 if χ 6= φ.

We have seen that every complex representation of a finite group G is equivalent to a unitary
representation; so every character of G is the character of a unitary representation. But if R is
unitary then

Rij(g−1) = Rjig (for all g ∈ G)

where the Rij are the coordinate functions of R. Now if χ is the character it follows that

χ(g−1) =
∑
i

Rii(g−1) =
∑
i

Riig = χ(g),

and so we deduce that χ(g−1) = χ(g) for every complex character of the finite group G. (Another
way to see this is to observe that χ(g) = trace(Rg) is the sum of the eigenvalues of the matrix
Rg, while χ(g−1) is the sum of the eigenvalues of R(g−1) = (Rg)−1, which are the inverses of the
eigenvalues of Rg. But gn = 1 for some n, so that (Rg)n = I, from which it follows that the
eigenvalues of Rg are nth roots of 1. And the inverse of an nth root of 1 coincides with its complex
conjugate.)

Let us abandon the ∗ notation introduced in Lecture 12 in favour of something more standard:
for functions f1, f2:G→ C define

(f1, f2) =
1
|G|

∑
g∈G

(f1g)(f2g).

This is an inner product on the space VG of all such functions. If χ and φ are characters of irreducible
representations then (χ, φ) is 0 if χ 6= φ and is 1 if χ = φ. This is the famous orthogonality of
irreducible characters. We may choose the representations R(1), R(2), . . . , R(s) to all be unitary,
and then orthogonality of coordinate functions becomes

(R(k)
pm, R

(l)
qn) = (1/dk)δklδpqδmn.

We showed in Lecture 10 that these coordinate functions form a basis for VG, whence
∑s
k=1 d

2
k = |G|.

We showed in Lecture 12 that the characters χ(1), χ(2), . . . , χ(s) span the space of class functions
on G, and since orthogonality of irreducible characters gives

(χ(i), χ(j)) = δij .

it follows that χ(1), χ(2) . . . , χ(s) form an orthonormal basis for the space of class functions. Hence
s, the total number of irreducible complex characters of G, equals the number of conjugacy classes
of G.

The values of the irreducible characters can be conveniently displayed in an array known as
the character table of the finite group G. This table has one row for each irreducible character χ(j)

and one column for each conjugacy class, the entry in the jth row and kth column being the value
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χ(j)(g) for elements g in the kth class. For example, here is the character table of a certain group
with 168 elements:

g1 g2 g3 g4 g5 g6

χ(1) 1 1 1 1 1 1
χ(2) 3 −1 1 0 −1+i

√
7

2
−1−i

√
7

2

χ(3) 3 −1 1 0 −1−i
√

7
2

−1+i
√

7
2

χ(4) 6 2 0 0 −1 −1
χ(5) 7 −1 −1 1 0 0
χ(6) 8 0 0 −1 1 1

Character tables carry quite a lot of information about the group in question. We shall proceed to
derive general facts about character tables, referring to the table above to illustrate them.

Let C1, C2, . . . , Cs be the conjugacy classes of G, and choose from each class Cj a representative
element gj . Let hj be the number of elements in Cj . Since one of the classes consists of the identity
element alone, for some j we have gj = 1G and hj = 1. The following lemma enables us to see at
a glance which column of the character table coresponds to the identity.

Lemma. The trace of a d×d unitary matrix has absolute value at most d, with equality occurring
if and only if the matrix is a scalar multiple of I.

Proof. Let M be a d × d unitary matrix. Then the columns of M form an orthonormal basis of
C
d, and in particular

∑d
i=1 |Mij |2 = 1 for each j. Thus |Mjj | ≤ 1, with equality if and only if

Mij = 0 for all i 6= j. So

|trace(M)| =
∣∣∣ d∑
j=1

Mjj

∣∣∣ ≤ d∑
j=1

|Mjj | ≤ d (1)

with equality only possible if M is diagonal and |Mjj | = 1 for all j. Indeed, since for any zj ∈ C

|1 + z2 + z3 + · · ·+ zd| < 1 + |z2|+ |z3|+ · · ·+ |zd|

unless all the zj are real and positive‡, and equality in (1) requires that

∣∣M11

∣∣ ∣∣( 1 +
d∑
j=2

(Mjj/M11)
)∣∣ =

∣∣ d∑
j=1

Mjj

∣∣ =
d∑
j=1

∣∣Mjj

∣∣ =
∣∣M11

∣∣( 1 +
d∑
j=2

∣∣Mjj/M11

∣∣ ),
it follows that |trace(M)| < d unless M is diagonal, |Mjj | = 1 for all j, and Mjj/M11 is real and
positive for all j. These latter two conditions clearly force all the diagonal entries to be equal. �

It follows from the lemma that |χ(k)(g)| ≤ dk for all g ∈ G; furthermore, since R(k)(1G) is the
dk×dk identity matrix, which has trace dk, we see that χ(k)(gj) = dk when Cj = {1G}. The column
of the character table corresponding to the identity element thus has positive integer entries which
are also the maximum absolute values of the entries in the various rows. In the table above it is
the first column.

‡ The student who is unfamiliar with this fact can easily prove it by induction, showing first
that |1 + z| < 1 + |z| unless z is real and positive.
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Lecture 14, 10/9/97

The orthogonality relation (1/|G|)
∑
g∈G χ

(k)(g)χ(l)(g) = δkl can be rewritten as

1
|G|

s∑
j=1

hjχ
(k)(gj)χ(l)(gj) = δkl (2)

since χ(k)(g)χ(l)(g) = χ(k)(gj)χ(l)(gj) for each of the hj elements g in the class Cj . Regarding the
character table of G as a matrix T whose (k, j) entry is χ(k)(gj), the above equation says that if
U is the matrix whose (j, l) entry is (1/|G|)hjχ(l)(gj) then TU = I. Now this forces UT = I also,
and thus

1
|G|

s∑
l=1

hjχ(l)(gj)χ(l)(gk) = δjk

for all j and k. Note that hj is a common factor on the left hand side of this formula. Remember
also (see Lecture 4) that hj is the index in G of the centralizer of gj . So multiplying through by
|CG(gj)| gives us the column orthogonality relation

s∑
l=1

χ(l)(gj)χ(l)(gk) = δjk|CG(gj)|. (3)

This is, in a way, simpler than the row orthogonality relation (Eq. (2)) since you do not need to
know the hj ’s to apply it. Note that putting k = j in Eq. (3) yields that

∑s
l=1 |χ(l)(gj)|2 is the

order of the centralizer of gj . In the case when gj is the identity element, whose centralizer is of
course the whole group, we recover the fact that

∑
l d

2
l = |G|.

Looking back at the character table given in Lecture 13, we see that the centralizer of g2 has
order 12 + (−1)2 + (−1)2 + 22 + (−1)2 = 8, the centralizer of g3 has order 12 + 12 + 12 + (−1)2 = 4,
the centralizer of g4 has order 12 + 12 + (−1)2 = 3, and g5 and g6 each have centralizers of
order 12 + |(1/2)(−1 + i

√
7)|2 + |(1/2)(−1 + i

√
7)|2 + (−1)2 + 12 = 7. And summing the squares

of the numbers in the first column confirms that the group has order 168. Using the formula
hj = |G|/|CG(gj)| we find that h2 = 168/8 = 21, and similarly h3, h4, h5 and h6 are, respectively,
42, 56, 24 and 24. The total number of elements in the group is the sum of the numbers of elements
in all the classes, and this checks since 1 + 21 + 42 + 56 + 24 + 24 = 168. Column orthogonality is
easily checked: for example, multiplying the second last entry of each row by the complex conjugate
of the last entry and adding gives 12 +(1/4)(−1−i

√
7)2 +(1/4)(−1−i

√
7)2 +(−1)2 +02 +12 = 0. It

is also easy to check row orthogonality: for example, calculating
∑
j hjχ

(k)(gj)χ(l)(gj) with k = 2
and l = 3 gives 1×9+21× (−1)2 +42×12 +0+24× (1/4)(−1+ i

√
7)2 +24× (1/4)(−1− i

√
7)2 = 0.

Let us illustrate some of the other deductions that are possible. The centralizer of each element
contains as a subgroup the cyclic subgroup generated by the element itself. Thus the order of an
element must be a divisor of the order of the centralizer. We deduce immediately that in the
example we have been discussing the elements g5 and g6 have order 7 and g4 has order 3. Let C be
the cyclic subgroup generated by g5, and consider the restriction to C of the representation R(2).
This gives a representation of C of degree 3. Now the irreducible representations of a cyclic group
of order 7 all have degree 1, and are obtained by mapping a generating element to the various
complex 7th roots of 1. Writing ζ = e2πi/7 we deduce that

R(2)(g5) = X−1

 ζk 0 0
0 ζl 0
0 0 ζm

X
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for some integers k, l and m. Taking traces we deduce that ζk + ζl + ζm = (1/2)(−1 + i
√

7).
Considering all possible values for k, l and m it is not hard to deduce from this that in fact
{k, l,m} = {1, 2, 4}. In other words, we have determined the eigenvalues of R(2)(g5). In a similar
fashion one can deduce that the eigenvalues of R(2)(g4) are 1, ω and ω2, where ω = e2πi/3.

Expressing the regular representation in terms of irreducibles

Let G be a group of order n, with elements s1, s2, . . . , sn. The matrix version of the regular
representation we constructed in Lecture 10 maps each g ∈ G to the matrix whose (i, j)-entry is
1 if gsj = si and 0 if gsj 6= si. In particular, for each i the (i, i)-entry is 1 if and only if g is the
identity element. So when g is not the identity all the diagonal entries of Rg are zero, and so the
trace of Rg is zero. Hence if χ is the character of the regular representation it follows that

χ(g) =
{
n = |G| if g = 1G,
0 if g 6= 1G.

Now for each of the irreducible characters χ(l) we can easily calculate the inner product (χ, χ(l)):

(χ, χ(l)) =
1
|G|

∑
g∈G

χ(g)χ(l)(g) =
1
|G|

χ(1)χ(l)(1) = dl

since χ(1) = |G| and χ(k)(1) = dl (and the terms for g 6= 1 are zero). But we also know that χ, like
any other character, can be expressed in the form

∑s
k=1mkχ

(k) (see Lecture 10 and the solution
to Exercise 2 of Tutorial 5). So

(χ, χ(l)) =
s∑

k=1

mk(χ(k), χ(l)) =
s∑

k=1

mkδkl = ml.

We conclude that ml = dl for all l: each irreducible character occurs as a constituent of χ with
multiplicity equal to its degree. Another way to prove this is to calculate the matrix representation
of G obtained by using the basis of the G-module VG consisting of the coordinate functions of the
representations R(1), R(2), . . . , R(s). Recall that we showed in Lecture 10 that these coordinate
functions do form a basis for VG, and that VG has another basis (consisting of the functions fx
defined in Lecture 11) which is in bijective correspondence with G, and which elements of G permute
according to the left multiplication action of G on itself. So the representation obtained from the
basis of coordinate functions will be equivalent to the matrix version of the regular representation
described above.

We need to choose an ordering of the basis, and let us do this as follows. Take the coordinate
functions of R(1) first, in the order R(1)

11 , R(1)
12 , . . . , R(1)

1d1
, followed by R

(1)
21 , R(1)

22 , . . . , R(1)
2d1

, and
so on, then move on to the coordinate functions of R(2) ordered similarly, then R(3), and so on.
We will show that in fact for each fixed k and p the functions the functions R(k)

p1 , R(k)
p2 , . . . , R(k)

pdk

span a submodule Vkp of VG, by showing that gR(k)
p1 , gR(k)

p2 , . . . , gR(k)
pdk

(for all g ∈ G) are linear

combinations of R(k)
p1 , R(k)

p2 , . . . , R(k)
pdk

. Indeed, for all k, p and m and all h ∈ G,

(gR(k)
pm)h = R(k)

pm(hg) =
dk∑
l=1

(R(k)
pl h)(R(k)

lm g) (since R(k)(hg) = (R(k)h)(R(k)g))
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which shows that gR(k)
pm =

∑dk
l=1(R(k)

lm g)R(k)
pl . Furthermore, it shows that the matrix of the action

of g on Vkp relative to this basis has (l,m)-entry R(k)
lm g. In other words, for each of the submodules

Vk1, Vk2, . . . , Vkdk we obtain R(k) as the matrix representation. The representation for the whole
of VG is thus the diagonal sum of d1 copies of R(1), d2 copies of R(2), and so on, as required.

Induced representations and induced characters

Linear operators are encountered in many different areas of mathematics, and to deal with
them usually requires finding eigenvectors and (if possible) diagonalizing them. If ρ is an invertible
linear operator then n 7→ ρn is a representation of the infinite cyclic group Z, and diagonalizing ρ
amounts to expressing this representation as a diagonal sum of representations of degree 1. If ρ is
not diagonalizable then at least one can put it into Jordan canonical form. Representation theory
is concerned with the problem of finding canonical forms not just for single linear transformations
but for groups of linear transformations. If the group is finite and we are working over the complex
field, the appropriate canonical form for an arbitrary representation should be a diagonal sum of
irreducible representations R(k). Thus the two basic problems in the representation theory of finite
groups are to find these irreducible representations, and to find methods for expressing an arbitrary
representation as a sum of irreducibles.

The orthogonality relations provide a powerful method for dealing with the latter of these two
basic problems. As was done above for the regular representation, the orthogonality relations can
be used to compute the multiplicities with which the various irreducibles occur as constituents of
an arbitrary given representation. Then to explicitly express the representation as a diagonal sum
of irreducibles is a matter of solving linear equations. But none of this can be done unless we can
find all the irreducible representations in the first place. So the primary fundamental problem of
representation theory is to construct irreducible representations.

So far we have not investigated any methods for constructing any representations, let alone
irreducible ones. We shall now describe a process for constructing a representation of G given a
representation of a subgroup of G. The resulting representation of G need not be irreducible, even
if the given representation of the subgroup is irreducible. But if we can construct enough reducible
representations of G we will have more chance of finding irreducible ones.

Let L be a subgroup of G and let x1, x2, . . . , xn be a system of representatives of the left
cosets of L in G (see Lecture 3). For each g ∈ G and each j ∈ {1, 2, . . . , n} the coset gxjL
must coincide with one of x1L, x2L, . . . , xnL. Thus G acts on the set {x1L, x2L, . . . , xnL} by left
multiplication. This gives us a permutation representation of G which can be converted to a matrix
representation by identifying permutations with permutation matrices as described in Lecture 10.
To be precise, the matrix associated with g ∈ G has (i, j)-entry which is 1 if gxjL = xiL and
0 otherwise. This is the simplest example of an induced representation: it is the representation
induced from the 1-representation of the subgroup L. Note that in the case L = {1} this is just
the regular representation of G.

Nw let R be a matrix representation of L of degree d. We have seen above that for each
j ∈ {1, 2, . . . , n} there is a unique i ∈ {1, 2, . . . , n} such that x−1

i gxj ∈ L (since this is equivalent
to gxjL = xiL). Let RG(g) be the nd × nd matrix which is an n × n array of d × d blocks, the
(i, j)-block being zero if x−1

i gxj /∈ L and R(x−1
i gxj) if x−1

i gxj ∈ L. If we define Ṙg to be Rg if
g ∈ L and 0 if g /∈ L then we have

RG(g) =


Ṙ(x−1

1 gx1) Ṙ(x−1
1 gx2) · · · Ṙ(x−1

1 gxn)
Ṙ(x−1

2 gx1) Ṙ(x−1
2 gx2) · · · Ṙ(x−1

2 gxn)
...

...
...

Ṙ(x−1
n gx1) Ṙ(x−1

n gx2) · · · Ṙ(x−1
n gxn)
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and the (i, j)-block of the product RG(g)RG(h) is
n∑
k=1

Ṙ(x−1
i gxk)Ṙ(x−1

k hxj) = Ṙ(x−1
i gxk)R(x−1

k hxj)

where k is the unique index such that x−1
k hxj ∈ L. So the (i, j) block of RG(g)RG(h) is

R(x−1
i gxk)R(x−1

k hxj) = R(x−1
i ghxj)

if x−1
i gxk is also in L and is zero if x−1

i gxk /∈ L. Given that x−1
k hxj ∈ L we see that the product

(x−1
i gxk)(x−1

k hxj) = x−1
i ghxj is in L if and only if x−1

i gxk ∈ L. So the (i, j) block of RG(g)RG(h)
is R(x−1

i ghxj) if x−1
i ghxj is in L and is 0 otherwise. That is, it equals Ṙ(x−1

i ghxj), the (i, j) block
of RG(gh). So RG(gh) = RG(g)RG(h).

To complete the proof that RG is a matrix representation of G it remains to prove that RG(g)
is invertible for each g. Since RG(g)RG(g−1) = RG(1) it suffices to show that RG(1) is the identity.
But this is clear since the (i, j) block of RG(1) is Ṙ(x−1

i xj), which is R(1) = I if i = j and 0 if
i 6= j (since x−1

i xj /∈ L if i 6= j).
Our next task is to calculate the character of the representation RG of G in terms of the

character of the representation R of L. There are various forms of this formula, and which is best
to use depends on the context. Writing χ for the character of R and χG for the character of RG,
and defining χ̇(g) to be equal to χ(g) for g ∈ L and zero for g /∈ L, we see immediately from the
formula for RG(g) that

χG(g) =
s∑
i=1

χ̇(x−1
i gxi) =

∑
i

χ(x−1
i gxi)

where this last sum is over those xi such that x−1
i gxi ∈ L. For each l ∈ L the element l−1x−1

i gxil
is in L if and only if x−1

i gxi ∈ L, and when it is in L then χ(l−1x−1
i gxil) = χ(x−1

i gxi), since χ
is a class function on L. Thus χG(g) = (1/|L|)

∑
l∈L
∑
i χ(l−1x−1

i gxil) (sum over those i and l

such that l−1x−1
i gxil ∈ L). As each element of G is uniquely expressible in the form xil (with

i ∈ {1, 2, . . . , n} and l ∈ L) we conclude that

χG(g) =
1
|L|
∑
x

χ(x−1gx)

where the sum is over those x ∈ G such that x−1gx ∈ L.
As x runs through all elements of G every conjugate of g occurs |CG(g)| times as a value of

x−1gx. For example, x−1gx = g for each of the |CG(g)| elements x in CG(g), and any other given
conjugate of g will arise from the elements x in some other coset CG(g)h. So we can write

χG(g) =
|CG(g)|
|L|

∑
l∈L

χ(l)

where the L is set of all conjugates of g that are in L. Now L is a union of conjugacy classes of L,
and if l1, l2, . . . , lm are representatives of these classes then we can write

χG(g) =
|CG(g)|
|L|

m∑
i=1

qiχ(li)

where qi is the number of elements in the L-conjugacy class of li. Finally, since qi = |L|/|CL(li)|
we can also write

χG(g) =
m∑
i=1

|CG(g)|
|CL(li)|

χ(li) =
|G|
|L|

m∑
i=1

qi
h
χ(li),

where h is the number of elements in the G-conjugacy class of g.
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