
Metric Spaces Lecture 17

Homeomorphisms

At the end of last lecture an example was given of a bijective continuous function f
such that f−1 is not continuous. For another example, consider the sets T = [0, 2π) ⊆ R
and S = { (x, y) ∈ R2 | x2 + y2 = 1 }, and let f :T → S be given by f(θ) = (cos θ, sin θ).
It is trivial that f is bijective. Viewed geometrically, f wraps the interval T around
the circle S, joining the ends together. We consider T as a subspace of R and S as a
subspace of R2, using the usual (Euclidean) metrics on R and R2, so that the concept
of continuity for functions between S and T is the familiar concept studied in calculus
courses. The function f is thus clearly continuous, since its component functions, cos and
sin, are differentiable and therefore continuous. Joining the ends of the interval together
is thus perfectly compatible with continuity. However, the inverse function g:S → T cuts
the circle open at the point (1, 0) and unwraps it. This is not a continuous operation:
some points that are close together in S are mapped by g to points that are far apart
in T .
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In the diagram, A is the point (1, 0) in S, and g maps it to the point A′ in T . But points
arbitrarily near to A that are below the x-axis are mapped to points in T that are near to
A′′ rather than A′. This tells us that g is discontinuous at A. Indeed, it wiil be possible
to find an open neighbourhood of A′ = g(A) in T whose preimage in S is not open. A
suitable such open neighbourhood of A′ is T ∩ (−π/2, π/2) = [0, π/2) (which, although it
is not open in R, is open in T , since it is the intersection of T with an open subset of R).
The preimage in S of this neighbourhood is the arc from A to B, including A but not B.
This is not an open subset of S, since it contains A but no neighbourhood of A.†

Of course, it is possible for the inverse of a continuous bijective function to be conti-
nous, and indeed functions of this kind are very important in topology.
Definition. Let X and Y be topological spaces. A homeomorphism from X to Y is
a bijective function f :X → Y such that f and f−1 are both continuous. If there is a
homeomorphism X → Y we say that X is homeomorphic to Y , and we write X ∼= Y .

It is clear that ∼= is an equivalence relation on topological spaces. Note that if
f :X → Y is a bijective function and g:Y → X its inverse, then S 7→ f(S) = g−1(S) is a
bijective function from the set of all subsets of X to the set of all subsets of Y . The inverse
function from the subsets of Y to the subsets of X is given by T 7→ g(T ) = f−1(T ).‡
When f and g are both continuous then these functions take open sets to open sets.
Thus homeomorphic topological spaces have the same topological structure: they can be

† See also the solutions to Tutorial 7, Exercise 1.

‡ Remember, however, that S 7→ f(S) and T 7→ f−1(T ) are not inverses of each other when
f is not bijective. In general all one can say is that S ⊆ f−1(f(S)) and f(f−1(T )) ⊆ T .
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regarded as different incarnations of the same abstract space, the homeomorphism being
simply a relabelling of the points.

If (X, dX) and (Y, dY ) are metric spaces that are homeomorphic topological spaces
then we also say that X and Y are topologically equivalent.

In the example considered atthe end of Lecture 16, the function f : [0, 1]∪(2, 3] → [0, 2]
is not a homeomorphism, since its inverse is not continuous. However, this does not show
that the spaces [0, 1]∪ (2, 3] and [0, 2] are not homeomorphic: it is conceivable that there
might be some other function [0, 1] ∪ (2, 3] → [0, 2] which is a homeomorphism. In fact
there is not—it is true that these spaces are not homeomorphic—but to prove this we
need to find some topological property possessed by one of the spaces but not the other.
Here by “topological property” we mean something that can be defined just in terms of
open sets. If the spaces were homeomorphic there would be no such property, since a
bijective correspondence that preserves open sets would also preserve properties defined
in terms of open sets.

A suitable property in this instance is connectedness, of which we shall have more to
say later. A space is said to be connected if it cannot be expressed as the disjoint union
of two nonempty open sets. Equivalently, X is connected if and only if X and ∅ are the
only subsets of X that are both open and closed. It is clear that X = [0, 1] ∪ (2, 3] is
disconnected, since [0, 1] = X ∩ (−1/2, 3/2) and (2, 3] = X ∩ (3/2, 7/2) are both open
subsets of X. On the other hand, Y = [0, 2] is a connected space, since in fact all intervals
in R are connected (as we shall prove later). So Y is not homeomorphic to X.

The following theorem lists a number of characterizations of homeomorphisms. These
all follow readily from things we have proved previously.

Theorem. Let X and Y be topological spaces, and let f :X → Y be a bijective function.
The following conditions are equivalent:

(i) f is a homeomorphism;
(ii) for all U ⊆ X, the set U is open in X if and only if f(U) is open in Y ;
(iii) for all F ⊆ X, the set F is closed in X if and only if f(F ) is closed in Y ;
(iv) f(S) = f(S), for all S ⊆ X;
(v) f−1(T ) = f−1(T ), for all T ⊆ Y ;
(vi) f(Int(S)) = Int(f(S)), for all S ⊆ X;
(vii) f−1(Int(T )) = Int(f−1(T )), for all T ⊆ Y .

Additionally, if X and Y are metric spaces then the following condition is also equivalent
to the conditions above:

(viii) for all sequences (xn)∞n=0 in X and all x ∈ X, the sequence (f(xn))∞n=0 in Y
converges to f(x) if and only if (xn) converges to x.

Proof. We proved above that (i) implies (ii): if f is a homeomorphism then U = f (−1)(V )
is open in X whenever V is open in Y (since f is continuous), and V = (f (−1))(−1)(U) is
open in Y whenever U is open in X (since f (−1) is continuous). Conversely, if (ii) holds
then both f and f (−1) have the property that preimages of open sets are open; so f and
f (−1) are both continuous, and (i) holds.

The equivalence of (ii) and (iii) follows readily from the fact that a set is closed if
and only if its complement is open, and if F is the complement of U then f(F ) is the
complement of f(U) (given that f is bijective). The proofs that (iv), (v), (vi) and (vii)
are all equivalent to (i), (ii) and (iii) are similarly easy, and are left as exercises for the
reader. (See also the solutions to Exercises 7 and 8 of Tutorial 6.)
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If X and Y are metric spaces then by Question 1 of Assignment 2 we know that f
is continuous at the point x ∈ X if and only if for all sequences (xn)∞n=1 in X, if xn → x
as n → ∞, then f(xn) → f(x) as n → ∞. Applying the same result to f−1 we see that
f−1 is continuous at f(x) if and only if for all sequences (xn)∞n=1 in X, if f(xn) → f(x)
as n →∞ then xn → x as n →∞. So condition (viii) is equivalent to continuity of both
f and f−1; that is, (viii) is equivalent to (i). �

Equivalent metrics
If d1 and d2 are metrics on the same set X then we say that d1 and d2 are equivalent

metrics if the collection of subsets of X that are open relative to d1 is the same as the
collection of subsets of X that are open relative to d2. Another way to express this
condition is to say that the identity mapping from X to itself, considered as a mapping
from the metric space (X, d1) to the metric space (X, d2), is a homeomorphism.

By the epsilon-delta characterization of continuity (see below), the identity mapping
(X, d1) → (X, d2) is continuous if and only if for all x ∈ X and all ε > 0 there exists
a δ > 0 such that for all t ∈ X, if d1(x, t) < δ then d2(x, t) < ε. That is, every open
ball Bd2(x, ε) contains some open ball Bd1(x, δ). Expressed a little less formally, this says
that you can ensure that t is d2-close to x by making it d1-close to x. The metrics are
equivalent if and only if the identity mappings (X, d1) → (X, d2) and (X, d2) → (X, d1)
are both continuous, and this is equivalent to saying that for all x ∈ X, every open ball
of (X, d2) with centre x contains an open ball of (X, d1) with centre x, and every open
ball of (X, d1) with centre x contains an open ball of (X, d2) with centre x.

Equivalence of metrics can also be characterized in terms of convergence of sequences.
If d1 and d2 are equivalent and (xn)∞n=1 is a sequence in X that converges, as a sequence
in (X, d1), to some point x ∈ X, then it is easy to show that as a sequence in (X, d2)
it must still converge to x. For, given any ε > 0, one may choose an ε′ > 0 such that
Bd1(x, ε′) ⊆ Bd2(x, ε), and, because lim

n→∞
xn = x in (X, d1), there exists an N such that

xn ∈ Bd1(x, ε′) for all n > N . It follows that xn ∈ Bd2(x, ε) for all n > N , and because
ε was arbitrary this shows that lim

n→∞
xn = x in (X, d2). Symmetrically, any convergent

sequence in (X, d2) will also converge, to the same limit, when considered as a sequence
in (X, d1).

Conversely, if every convergent sequence in either space is also convergent in the other
space, with the same limit, then it follows that the metrics are equivalent. For suppose
that the condition holds, and let F ⊆ X be any set that is closed relative to d1. Let F
be the closure of F relative to d2. By a proposition we proved in Lecture 8, there is a
sequence (xn) of points of F such that xn → x as n →∞, in (X, d2). By the hypothesis,
xn → x as n → ∞ also in (X, d1). But F is closed in (X, d1), and xn ∈ F for all n; so
lim

n→∞
xn ∈ F . So x ∈ F , and since x was an arbitrary element of F we have shown that

F ⊆ F (and thus F = F ). So F is closed in (X, d2). Symmetrically, every closed set in
(X, d2) is also closed in Xd1 . And since the open sets are just the complements of the
closed sets, it follows that the open sets of (X, d1) are the same as the open sets of (X, d2).
So the metrics are equivalent, as claimed.

Uniform continuity
Let (X, dX) and (Y, dY ) be metric spaces, and f :X → Y a function. The epsilon-

delta characterization of continuity is as follows: f is continuous on X if and only if for
all x ∈ X and all ε > 0 there exists a δ > 0 such that, for all t ∈ X, if dX(x, t) < δ then
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dY (f(x), f(t)) < ε.
Definition. The function f is said to be uniformly continuous on X if for all ε > 0
there exists δ > 0 such that for all x, t ∈ X, if dX(x, t) < δ then dY (f(x), f(t)) < ε.

The difference between continuity and uniform continuity is that for continuity the
number δ is allowed to depend on x as well as on ε, whereas for uniform continuity δ must
depend on ε only. It is clear, therefore, that uniform continuity implies continuity.

Our next result gives a sufficient but not necessary condition for metrics d1 and d2

to be equivalent.
Proposition. Let d1 and d2 be metrics on the set X. If there exist k1, k2 > 0 such that

k1d1(x, y) < d2(x, y) < k2d1(x, y) for all x, y ∈ X,

then d1 and d2 are equivalent.
Proof. We show that the identity mapping f : (X, d1) → (X, d2) is uniformly continuous.
Indeed, given ε > 0 we can define δ = k−1

2 ε, and then for all x, t ∈ X, if d1(x, t) < ε then

d2(f(x), f(y)) = d2(x, y) ≤ k2d1(x, y) < k2δ = ε,

as required. Similarly, the identity mapping g: (X, d2) → (X, d1) is uniformly continuous,
since given ε > 0 we can define δ = k1ε, and then for all x, t ∈ X, if d2(x, t) < ε then

d1(g(x), g(y)) = d1(x, y) ≤ k−1
1 d1(x, y) < k−1

1 δ = ε.

Since the identity functions in both directions are continuous and inverse to each other,
they are homeomorphisms. Hence the metrics are equivalent. �

Additional examples
To illustrate the ideas we have been dealing with, we provide here some extra exam-

ples that were not presented in the lecture.
Example 1. Let p ≥ 1 and let dp be the metric on Rn defined by

dp(x, y) = p
√
|x1 − y1|p + |x2 − y2|p + · · ·+ |xn − yn|p.

Also, let d∞ be the sup metric,

d∞(x, y) = max(|x1 − y1|, |x2 − y2|, . . . , |xn − yn|).

Then dp and d∞ are equivalent. (We mentioned this fact previously, in Lecture 7.) The
proof consists in showing that

d∞(x, y) ≤ dp(x, y) ≤ n1/pd∞(x, y).

The details are trivial, and are left to the reader. (See also the solution of Question 5 of
Tutorial 7.)
Example 2. Let C be the set of all continuous functions on [0, 1], and let d1, d∞ be the
metrics on C defined by

d1(f, g) =
∫ 1

0

|f(x)− g(x)| dx

d∞(f, g) = sup
x∈[0,1]

|f(x)− g(x)|
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for all f, g ∈ C. Then d1 and d∞ are not equivalent.
To prove this we show that if f is the constant function f(x) = 0 for all x ∈ [0, 1]

then the open ball Bd∞(f, 1) does not contain any open ball Bd1(f, δ) (where δ > 0).
Note first that

Bd∞(f, 1) = { g ∈ C | d∞(f, g) < 1 } = { g ∈ C | sup
x∈[0,1]

|g(x)| < 1 },

whereas

Bd1(f, δ) = { g ∈ C | d1(f, g) < δ } = { g ∈ C |
∫ 1

0

|g(x)| dx < δ },

Our task is to show that no matter how small δ is (provided it is positive), there exists
a function g ∈ Bd1(f, δ) that is not in Bd∞(f, 1). So it suffices to produce a g with∫ 1

0
|g(x)| dx < δ and g(t) ≥ 1 for some t ∈ [0, 1]. This is easily achieved, since we can

make the area under the graph of |g(x)| as small as we please by restricting the region
on which |g(x)| ≥ 1 to an extremely small subinterval of [0, 1]. So let us choose g to have
graph as shown in the diagram.

0.5 1.0

1

2

( δ
2
, 0)

Thus, g is defined by the following formula:

g(x) =
{

2− 4
δ x if 0 ≤ x ≤ δ/2,

0 if δ/2 < x ≤ 1.

The value of
∫ 1

0
|g(x)| dx is the area of the shaded triangular region in the diagram, which

is δ/2, since the base has length δ/2 and the height is 2. So g ∈ Bd1(f, 1). And since
g(0) > 1 it follows that g /∈ Bd∞(f, 1).

Note that these calculations have shown us that the identity function, from C with
metric d1 to C with metric d∞, is not continuous. One cannot ensure that g will be close
to f in (C, d∞) by only insisting that g be chosen close to f in (C, d1). However, the
identity mapping in the other direction, (C, d∞) → (C, d1), is continuous, since

d1(f, g) =
∫ 1

0

|f(x)− g(x)| dx ≤
∫ 1

0

sup
t∈[0,1]

|f(t)− g(t)| dx

= (1− 0) sup
t∈[0,1]

|f(t)− g(t)| = d∞(f, g)

for all f, g ∈ C. We can ensure that f and g are close in (C, d1) by requiring them to be
close in (C, d∞).

–5–



Our two examples have shown that for all p ≥ 1, including p = ∞, the metrics dp

on Rn are all equivalent, but that the analogous metrics on C are not equivalent. It is
natural to also ask about the space X of all infinite sequences a = (ai)∞i=1 of real numbers
such that

∑∞
i=1 |ai| converges. For each p ≥ 1 we may define a metric dp on this space

by dp(a, b) =
(∑∞

i=1 |ai − bi|p
)1/p. (Note that one may use the comparison test to deduce

the convergence of
∑∞

i=1 |ai−bi|p from the convergence of
∑∞

i=1 |ai−bi| whenever p ≥ 1.)
So are the metrics dp for different values of p equivalent?

The answer to this question is no. This should not be surprising, since if q > p then
convergence of

∑∞
i=1 |ai|q does not guarantee convergence of

∑∞
i=1 |ai|p. If we let z be the

zero sequence, zi = 0 for all i, then Bdq
(z, δ) consists of all a ∈ X such that

∑∞
i=1 |ai|q < δ.

We shall show that no matter how small δ is, we can find an a satisfying this condition
such that a /∈ Bdp

(z, 1). Indeed, if xi = p
√

1/i then we can show, using the integral test,
that

∑∞
i=1 xq

i converges (given that q > p). But
∑∞

i=1 xp
i is the harmonic series, well

known to to diverge. If we put S =
∑∞

i=1 xq
i , and yi = xi(δ/S)1/q, then

∑∞
i=1 yq

i = δ.
But we can choose k ∈ Z+ large enough so that

∑k
i=1 yp

i = (δ/S)p/q
∑k

i=1(1/i) > 1, and
we can obtain an element a ∈ X by setting ai = yi for i ≤ k and ai = 0 for i > k. Then

dq(a, z) =
∞∑

i=1

|ai − zi|q =
∞∑

i=1

|ai|q =
k∑

i=1

|ai|q =
k∑

i=1

yq
i <

∞∑
i=1

yq
i = δ,

so that a ∈ Bdq (z, δ), but

dp(a, z) =
∞∑

i=1

|ai − zi|p =
∞∑

i=1

|ai|p =
k∑

i=1

|ai|p =
k∑

i=1

yp
i > 1,

so that a /∈ Bdp
(z, 1).

–6–


	Homeomorphisms
	Equivalent metrics
	Uniform continuity
	Additional examples

