
Metric Spaces Lecture 4

Induced metric
If (X, d) is a metric space and Y ⊆ X we can define

dY :Y × Y → R

to be the restriction of the function d:X ×X → R. That is,

dY (a, b) = d(a, b) for all a, b ∈ Y .

In words this says that distance between two points of Y is just the same as the distance
between the same two points considered as points of X. The fact that d is a metric on
X trivially implies that dY is a metric on Y . It is called the metric on Y induced by the
metric on X. We say that the metric space (Y, dY ) is a subspace of the metric space (X, d).

Topology on metric spaces
Let (X, d) be a metric space and A ⊆ X. Recall that Int(A) is defined to be the set

of all interior points of A. It is obvious therefore that Int(A) ⊆ A.
Lemma. Let A be an arbitrary subset of the metric space X. Then Int(Int(A)) = Int(A).
Proof. As noted above, Int(B) ⊆ B for all B ⊆ X, and so putting B = Int(A) we deduce
that Int(Int(A)) ⊆ Int(A). So we just have to prove the reverse inclusion.

Let a ∈ Int(A) be arbitrary. Choose ε > 0 such that B(a, ε) ⊆ A. We shall show that
in fact B(a, ε) ⊆ Int(A). For, suppose that b ∈ B(a, ε). Since B(a, ε) is open, there exists
δ > 0 such that B(b, δ) ⊆ B(a, ε). Thus B(b, δ) ⊆ A, which shows that b ∈ Int(A). As
this holds for all b ∈ B(a, ε), we have shown that B(a, ε) ⊆ Int(A), as claimed. However,
this statement says that a is an interior point of Int(A), and since a was originally chosen
as an arbitrary point of Int(A), we have shown that all points of Int(A) are interior points
of Int(A), as required. �

A subset of a metric space is open if and only if every point of the set is an interior
point. That is, a set is open if and only if it equals its own interior. The lemma above
shows that Int(A) has this property for any A. Thus Int(A) is always an open set. Note,
however, that Int(A) could well be empty. For example, if X = R2 and d is the Euclidean
metric—that is, the usual metric for R2—and A = { (x, y) | x2 + y2 = 1 } then Int A = ∅
(since there is no open ball consisting of points which all lie on the circumference of
the unit circle. Similarly, if B = { (x, 0) | x ∈ R } then Int(B) = ∅, since there is no
open ball consisting entirely of points on the X-axis. An example of a set which does
have a nonempty interior is C = { (x, y) | −1 ≤ x ≤ 1 and − 1 ≤ y ≤ 1 }. In fact
Int(C) = { (x, y) | −1 < x < 1 and − 1 < y < 1 }.

It is immediate from the above discussion that Int(A) is the largest open set which is
a subset of A. It can also be described as the union of all the open balls that are subsets
of A, or indeed as the union of all the open sets which are subsets of A. It is an important
property of open sets that the union of any collection of open sets is again open.
Lemma. If A, B are subsets of X such that A ⊆ B then Int(A) ⊆ Int(B).
Proof. Let a ∈ Int(A). Then we may choose ε > 0 with B(a, ε) ⊆ A. Since A ⊆ B this
gives B(a, ε) ⊆ B, and so a ∈ Int(B). Since a was an arbitrary point of Int(A) we have
shown that all points of Int(A) are in Int(B); that is, Int(A) ⊆ Int(B). �
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More background

It is worth noting that a sequence is really a kind of function. Thus a sequence
(ak)∞k=1 = (a1, a2, . . . ) is simply a function whose domain is Z+ (defined by the rule
k 7→ ak for all k ∈ Z+). An element of Rn is the same thing as a finite sequence
(x1, x2, . . . , xn) of real numbers, which is just a function from the set { i ∈ Z | 1 ≤ i ≤ n }
to R.

Often mathematicians talk of an indexed family of objects. Notation like (Si)i∈I is
commonly used for indexed families; the idea is that there is an object Si for each i in
the indexing set I. For example, the infinite sequence (ak)∞k=1 is a family indexed by the
set of positive integers. In fact, a family indexed by a set I is exactly the same thing as
a function with domain I. But when we write ai rather than a(i) for the value of the
function at i ∈ I then we usually write a = (ai)i∈I and call a a family indexed by I rather
than a function defined on I.

Back to topology

Proposition. Let (Ai)i∈I be an arbitrary family of open subsets of the metric space X.
Then A =

⋃
i∈I Ai is an open subset of X.

Proof. For each i ∈ I we have Ai ⊆ A; so, by the lemma above, we have Int(Ai) ⊆ Int(A).
But Ai is open; so Ai = Int(Ai), and thus Ai ⊆ Int(A). Since this holds for all i ∈ I it
follows that

⋃
i∈I Ai ⊆ Int(A). That is, A ⊆ Int(A). The reverse inclusion is trivial; so

A = Int(A). Hence A is open, as required. �

It is not true that the intersection of an arbitrary family of open sets is open. Indeed,
in Question 3 of Tutorial 1 we saw an example of an infinite sequence of open intervals in
R whose intersection is the singleton set {0}. Open intervals in R are open sets (relative
to the usual metric), but {0} is not open.

It is true that the intersection of two open sets is open. This is easily proved, as fol-
lows. Let U1 and U2 be open sets and let a ∈ U1∩U2 be arbitrary. Then a ∈ U1 = Int(U1),
and so there exists ε1 > 0 such that B(a, ε1) ⊆ U1. Similarly, there exists ε2 > 0 such
that B(a, ε2) ⊆ U2. If we put ε = min(ε1, ε2) then ε ≤ ε1 and ε ≤ ε2), and so

B(a, ε) ⊆ B(a, ε1) ⊆ U1

and
B(a, ε) ⊆ B(a, ε2) ⊆ U2.

Thus B(a, ε) ⊆ U1∩U2, which shows that a ∈ Int(U1∩U2). This holds for all a ∈ U1∩U2;
so U1 ∩ U2 is open.

It follows from the above, by a straightforward induction, that the intersection of
finitely many open sets is always open. For suppose that U1, U2, . . . , Un are open sets.
Define sets Vi recursively, as follows: let V1 = U1, and for 2 ≤ i ≤ n let Vi = Vi−1 ∩ Ui.
Thus V2 = U1 ∩ U2, and V3 = (U1 ∩ U2) ∩ U3, and so on. We have that V1 is open, and if
Vi−1 is open then so is Vi, being the intersection of the open sets Vi−1 and Ui. So all the
Vi are open, and since Vn = U1 ∩ U2 ∩ · · · ∩ Un this completes the proof of the following
proposition.

Proposition. The intersection of any finite collection of open sets is open.

The interior of the empty set is obviously empty; so ∅ = Int(∅), which shows that ∅
is open. The whole metric space X is also an open subset of X, since by the definition of
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an open ball B(a, ε) in X it is true that B(a, ε) ⊆ X for all a ∈ X and all ε > 0. Thus,
for example, for all a ∈ X we have B(a, 1) ⊆ X, showing that a ∈ Int(X).

It transpires that the properties of open sets mentioned in the preceding paragraph
and in the two propositions above are the key properties of open sets, in the sense that
many of the proofs in this subject need only these properties. Moreover, even when
dealing with a set S for which there is no concept of distance it sometimes turns out that
there is a natural collection of subsets of S satisfying these properties. A set S together
with such a collection of subsets of S is called a topological space; we shall have more to
say about these in the next several lectures.
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