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1. (i) Suppose that X is a connected space, and S a nonempty proper subset
of X. Prove that the frontier of S is nonempty.

(ii) Suppose that X is a disconnected space. Prove that X has a nonempty
proper subset S whose frontier is empty.

Solution.

(i) The frontier of S is S \ Int(S). If this is empty then S ⊆ Int(S). Since
we also have Int(S) ⊆ S and S ⊆ S, it follows that Int(S) = S = S.
So S is a nonempty proper subset of X that is both open and closed.
Hence X is disconnected.

(ii) Given that X is disconnected, there exists a nonempty proper subset
S of X that is both open and closed. So Int(S) = S = S, and hence
S \ Int(S) = ∅. That is, the frontier of S is empty.

2. Recall that a topology on a set X is a collection T of subsets of X such that T
is closed under finite intersections and arbitrary unions, and ∅, X ∈ T . (The
sets in the collection T are called the open sets of the topology.) If T1 and T2

are two topologies on X we say that T1 is coarser than T2, and T2 finer than
T1, if T1 ⊆ T2. (That is, all open sets of the coarser topology are also open in
the finer topology.)

If X is connected in some topology, is it necessarily connected in a finer
topology? Is it necessarily connected in a coarser topology?

Solution.

The finest possible topology on X is the discrete topology, in which every set
is open. Provided X has at least two points it will be disconnected in the
discete topology, since X = {x} ∪ (X \ {x}) (where x is any element of X)
expresses X as the disjoint union of two nonempty open sets. So it is certainly
not true that a connected space remains connected when we pass to a finer
topology.

If a space is connected then it cannot be expressed as the disjoint union of
two nonempty open sets. If we pass to a coarser topology then there will
be fewer open sets available. Every set that is open in the coarser topology
was already open in the finer topology; so any disconnection in the coarser
topology would have already been a disconnection in the finer topology. So a
connected set remains connected when moving to a coarser topology.
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3. Prove that if X and Y are homeomorphic topological spaces and X is compact
then Y is compact.

Solution.

A homeomorphism is a bijective function f such that f and f−1 both take
open sets to open sets. (Note that if S is a subset of the codomain of f then
by definition, f−1(S) = {x | f(x) ∈ S}. This is defined even if there is no
function f−1 inverse to f . But when f is bijective, so that the inverse function
does exist, f−1(S) coincides with { f−1(s) | s ∈ S }.) Any property whose
definition can be phrased in terms of open sets will necessarily be preserved by
homeomorphisms. Since compactness is such a property, it must be preserved.
Furthermore, the proof should be routine: write out what it means to say that
X is compact, apply the homeomorphism to transfer everything from X to
Y , and the result will be a statement that says that Y is compact.
A space is compact if every open covering of the space has a finite subcovering.
Assume that X has this property, and that f :X → Y is a homeomorphism.
We must prove that every open covering of Y has a finite subcovering. So,
suppose that (Vi)i∈I is a family of open subsets of Y such that Y =

⋃
i∈I Vi.

For each i ∈ I the set f−1(Vi) is an open subset of X, since f−1 takes open
sets to open sets. If x ∈ X then f(x) ∈ Y =

⋃
i∈I Vi; so f(x) ∈ Vi for

some i ∈ I, and so x ∈ f−1(Vi) for some i ∈ I. Thus X =
⋃

i∈I f−1(Vi),
whence (f−1(Vi))i∈I is an open covering of X, and since X is compact there
is a finite subset J of I such that X =

⋃
i∈J f−1(Vi).

Now if y ∈ Y is arbitrary then f−1(y) ∈ X =
⋃

i∈J f−1(Vi), and therefore
f−1(y) ∈ f−1(Vi) for some i ∈ J . It follows that

y = f(f−1(y)) ∈ f(f−1(Vi)) = Vi (for some i ∈ J),

and since y was an arbitrary element of Y , this shows that (Vi)i∈J is a covering
of Y . But J is a finite subset of I, and (Vi)i∈I was originally chosen as an
arbitrary open covering of Y . So we have shown that every open covering
of Y has a finite subcovering; that is, Y is compact.
(Note that in lectures we proved the stronger statement that the continuous
image of any compact set is compact. The proof was very similar to that
given above, which in fact does not use all aspects of the assumption that f
is a homeomorphism.)

4. Find a compact topological space X such that for some x ∈ X the subspace
X \ {x} of X is homeomorphic to R.

Solution.

It can be shown that R is homeomorphic to each open interval (a, b). The
closed interval [a, b] is compact; so one ought to be able to get a compact space
by adding two extra points to R. But one extra point suffices, because we
can identify a and b. Geometrically, this corresponds to wrapping the open
interval round a circle, so that the ends come up against each other. The
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addition of one extra point then makes a circle, which is a compact subset
of R2.
This can be done totally explicitly by use of the stereographic projection (as
described on p. 60 of Choo’s notes.), which gives a homeomorphism from R
to the set X = { (x1, x2) ∈ R2 | x2

1 + x2
2 = 1 } \ {(0, 1)}. The formula is

x 7→ (2x/(x2 +1), (x2−1)/(x2 +1)), and the inverse mapping X → R is given
by (x1, x2) 7→ x1/(1 − x2). Thus the unit circle S ⊆ R2 is a compact space
such that S \ {0, 1} is homeomorphic to R.
It is interesting that it is possible to generalize this result. We have shown
that by adding an extra point—let us call it ∞—to R, we can produce a
compact space R ∪ {∞} (homeomorphic to the unit circle S). What are the
open sets of this new space?
If d is the usual distance function on R2 then, for each point (a1, a2) ∈ S
and ε ∈ R, the set { (x1, x2) ∈ S | d((x1, x2), (a1, a2)) < ε } is an open subset
of S. Let us call such sets “open arcs”. Just as every open subset of R is
a union of open intervals, so every open subset of S is a union of open arcs.
We can easily identify the subsets of R ∪ {∞} that correspond to open arcs.
Firstly, an open arc that does not contain (0, 1) simply corresponds to an
open interval in R. An open arc that contains (0, 1) corresponds to a subset
of R ∪ {∞} of the form (−∞, α) ∪ {∞} ∪ (β,∞), for some α, β ∈ R with
α < β. Observe that the complement of this set is the closed and bounded
interval [α, β]. An arbitrary open subset of R ∪ {∞} is a union of subsets
corresponding to open arcs. If none of these arcs contain (0, 1) the result is
simply an open subset of R, and we can obtain any open subset of R in this
way. If any of the arcs contain (0, 1) then we obtain a subset of R ∪ {∞}
that is the union of {∞} and a collection of open intervals in R, of which at
least one has the form (−∞, α) and at least one has the form (β,∞). This
results in a set of the form {∞} ∪ U , where U is an open subset of R whose
complement is bounded, and any such set can be obtained. The complement
of an open set is closed, and by the Heine-Borel Theorem a closed subset of
R that is bounded is compact; so we can summarize what we have shown as
follows: the open sets of R∪{∞} are the open sets of R together with sets of
the form {∞} ∪ (R \ C), where C is a compact subset of R.
Phrased like this, the same construction works for any topological space X in
place of R. Add a new point, ∞, to X, and define a topology on X ∪ {∞} to
consist of all open subsets of X together with all sets of the form {∞}∪(X\C),
where C is a compact subset of X. This space X ∪ {∞} is compact and the
subspace obtained by removing ∞ is the original space X. (The proof of this
is left as a challenge for the keen student.)

5. Prove that there is no continuous function f : R → R with the property that
for each t ∈ R the equation f(x) = t has exactly two solutions x.

Solution.

This is an exercise in the use of the Intermediate Value Theorem. Suppose
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such an f exists. Then there must exist a, b ∈ R with a < b and f(a) = f(b).
If c ∈ (a, b) then f(c) 6= f(a), or else f(x) = f(a) would have at least three
solutions. Replacing f by −f if need be, we may suppose that f(c) > f(a).
The restriction of f to the compact interval [a, b] must achieve a maximum
value M ≥ f(c) on [a, b]. Suppose that f(d) = M , where d ∈ (a, b). By the
assumption about f there must be two solutions of f(x) = M + 1. Choose e
with f(e) = M + 1. Then e /∈ [a, b], since f(e) > M = maxx∈[a,b] f(x). Sup-
pose e < a. Applying the Intermediate Value Theorem on each of the intervals
[e, a], [a, d] and [d, b] we see that f(x) = 1

2f(a) + M must have solutions in
each of (e, a), (a, d) and (d, b) contradicting the fact that this equation should
have exactly two solutions. A similar contradiction is obtained if e > b.

6. Show that the initial value problem x′(t) = 3x(t)2/3, with x(0) = 0, has
infinitely many solutions x, by showing that

x(t) =
{

0 if t < c
(t− c)3 if t ≥ c

is a solution for all c > 0. Reconcile this with Picard’s Theorem.

Solution.

On subintervals of (−∞, c) the function x(t) is zero, and so its derivative is
0 = 02/3 = x(t)2/3. We have x′(t) = 3(t − c)2 = 3x(t)2/3 on subintervals of
(c,∞). The initial condition is obviously satisfied; so it remains to check that
the differential equation is satisfied at t = c. But

lim
t→c+

x(t)− x(c)
t− c

= lim
t→c+

(t− c)2 = 0 = lim
t→c−

x(t)− x(c)
t− c

;

so x′(c) exists and equals 0, which is also x(c)2/3, as required.
Picard’s Theorem says that under suitable conditions initial value problems
have unique solutions. Here the solution is not unique; so evidently the hy-
potheses of Picard’s Theorem are not satisfied. The theorem as we proved it
in lectures applies only to differential equations of the form x′(t) = f(t, x),
where the function f satisfies a Lipschitz condition with respect to x. Here
f(t, x) = x2/3, and this does not satisfy a Lipschitz condition on any interval
(−ε, ε), since (x2/3 − 0)/(x− 0) →∞ as x → 0+.

7. Let S be the two element set {0, 1}, and give S the discrete topology. (That
is, all four subsets are open.) Prove that a topological space X is connected
if and only if there is a continuous surjection X → S.

Solution.

The idea is that if f :X → S is continuous and surjective then U1 = f−1({0})
and U2 = f−1({1}) provide a disconnection of X; conversely, given a discon-
nection X = U1 ∪ U2 we can define a continuous surjection f by letting it
take the value 0 on U1 and 1 on U2. See Choo’s notes or the web version of
Lecture 22 for a more detailed proof.


