
Week 7 Summary

Lecture 13

Suppose that p and q are integers with gcd(p, q) = 1 (so that the fraction p/q is
in its lowest terms) and 0 < p < q (so that 0 < p/q < 1), and suppose that q is
not divisible by 2 or 5. Then gcd(q, 10) = 1, and by the Fermat-Euler Theorem
there exists a number k such that 10k ≡ 1 (mod q). So there exists an integer m
such that qm = 10k − 1, and it follows that

p

q
=

pm

10k − 1
=

pm

10k
+

pm

102k
+

pm

103k
+ · · ·

(as one can check by applying the formula for the sum of a geometric series).
Now pm < 10k; so pm is a number of at most k digits. Indeed, we can write
it as a k digit number by inserting leading zeros as required. For example,
3/37 = 9/111 = 81/999, which we can write as 081/999, and now

081
999

=
081
103

+
081
106

+
pm

109
+ · · · = .081081081 . . . .

In the same way, in the general case, we see that
pm

10k − 1
= .a1a2 . . . aka1a2 . . . aka1a2 . . . ak . . . ,

where a1a2 . . . ak is the k-digit representation of the integer pm. Thus the decimal
expansion of p/q has non-periodic part of length zero; that is, the first repeating
block starts immediately after the decimal point. We have shown this for all
fractions with denominator coprime to 10. Conversely, since a periodic decimal
with non-periodic part of length zero has the form

0.a1a2 . . . ak =
a1a2 . . . ak

99 . . . 9
, (∗)

we see that every such number is expressible as a fraction with denominator
coprime to 10. Furthermore, the length of the periodic part is the smallest k such
that the number can be written in the form (∗); that is, it is the least k such that
the number is expressible as a fraction whose denominator is 10k − 1. For the
number p/q (where gcd(p, q) = 1) this is the least k such that 10k−1 is a multiple
of q. In other words, it is the order of 10 modulo q.
Let us now drop the assumption that gcd(10, q) = 1 (although we still assume
that gcd(p, q) = 1). Then we may write q = 2a5bq′, where gcd(10, q′) = 1, and if
we define n to be either a or b, whichever is the larger, then

10n p

q
=

2n5np

2a5bq′ =
p′

q′

for some integer p′. So 10np/q is expressible as a fraction whose denominator
is coprime to 10. And n is the least integer with this property: if we instead
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multiply p/q by some smaller power of 10 then at least one 2 or 5 will remain in
the denominator. So n is the least integer such that in the decimal expansion of
10np/q the first repeating block starts immediately after the decimal point (since
the decimal expansions with this property correspond exactly to fractions with
denominator coprime to 10). But since multiplying by 10n just corresponds to
shifting the decimal point n places, it is clear that the length of the non-periodic
part of a repeating decimal α is the least n such that 10nα has non-periodic part
of length zero.
To summarize the above, for a fraction p/q in its lowest terms, the length of the
non-periodic part of the decimal expansion is max(a, b), where 2a and 5b are the
powers of 2 and 5 in the prime factorization of q, and the length of the periodic
part is the order of 10 modulo q′, where q′ is the part of q that is coprime to 10.
(That is, q = 2a5bq′.)
We address now the question of whether −1 is a square in Zp, where p is a prime.
Note that in Z17 we have 42 = 16 = −1; so −1 is a square. But −1 is not a
square in Z19, as one can easily check by computing k2 for all k from 1 to 18,
reducing the answers modulo 19. The crucial difference turns out to be that 17
is congruent to 1 mod 4, whereas 19 is congruent to 3 mod 4. We need to prove
some preliminary results.
*Lemma: If x2 ≡ 1 (mod p), where p is prime, then x ≡ ±1 (mod p).
*Wilson’s Theorem: Let n be an integer greater than 1.
(a) If n is prime then (n− 1)! ≡ −1 (mod n).
(b) If n is not prime then (n− 1)! 6≡ −1 (mod n).
The second part of this is clear, since if n is not prime then we may write n = ab
with a, b ∈ {1, 2, . . . , n − 1}, and then a and b are both divisors of (n − 1)!. So
they cannot be divisors of (n− 1)! + 1, and this certainly means that n cannot be
a divisor of (n− 1)! + 1. So (n− 1)! 6≡ −1 (mod n).†
The more important part of the theorem, part (a), is proved in all of the reference
books listed in the handbook.

Lecture 14

*Proposition: Let p be an odd prime. Then −1 is a square modulo p if and only
if p ≡ 1 (mod 4).
Note that if x2 ≡ −1 (mod p) then ordp(x) = 4, and in view of the Euler-Fermat
Theorem this implies that 4 |ϕ(p). Bur ϕ(p) = p − 1, since p is prime, and so
4 | p− 1. That is, p ≡ 1 (mod 4).

† Indeed, if we can write n = ab with a 6= b, and a, b ∈ {1, 2, . . . , n − 1}, then n = ab is

a divisor of (n − 1)!. So (n − 1)! ≡ 0 (mod n). This applies to all composite numbers

except squares of primes, and even then we can still conclude that (n− 1)! ≡ 0 (mod n),

since p2|p(2p), and p(2p)|(p2 − 1)!, except for the one case p = 2. Observe that 3! ≡ 2

(mod 4); for all composite numbers n > 4 we have (n− 1)! ≡ 0 (mod n).
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For the converse we show that if p ≡ 1 (mod 4) then in fact x = ((p− 1)/2)! is a
solution of x2 ≡ −1 (mod p). The proof uses Wilson’s Theorem. To illustrate the
idea, suppose first that p = 17. Wilson’s Theorem says that 16! ≡ −1 (mod 17).
But since the numbers 9, 10, 11, . . . 16 are congruent modulo 17 to the numbers
−8, −7, −6, . . . −1, we see that

16! = 1× 2 · · · × 8× 9× 10× · · · × 16
= 1× 2 · · · × 8× (−8)× (−7)× · · · × (−1)

= (−1)8(8!)2,

and so (8!)2 ≡ −1 (mod 17). The general proof is no more difficult: if p = 4k + 1
then we have

−1 = 1× 2× · · · (2k)(2k + 1) · · · (p− 2)(p− 1)
≡ 1× 2× · · · (2k)(−2k) · · · (−2)(−1)

= (−1)2k((2k)!)2

= ((2k)!)2.

As a method of finding a solution of x2 ≡ −1 (mod p), calculating x = ((p−1)/2)!
is not particularly good, since it requires performing (p− 1)/2 multiplications. It
would take no more work to calculate x2 for each x from 1 to (p − 1)/2, until
one is found that is a solution. We give an example illustrating a method, due to
Gauss, which reduces the amount of work involved in finding

√
−1 in Zp.

Consider the prime p = 821 (which is congruent to 1 modulo 4), and suppose that
x is an integer such that x2 + 1 is a multiple of 821. Reducing x modulo 821
allows us to assume that −410 ≤ x ≤ 410, and replacing x by −x if need be gives
0 < x ≤ 410. For some integer k we have

821k = x2 + 1 ($)

and since |x| ≤ 410 we have k = (x2 +1)/821 < (4102 +1)/821 < 4102/820 = 205.
So the integers from 1 to 204 are the only values of k we need consider in the
equation ($). We now set about reducing the number of possibilities by looking
at ($) modulo various small numbers.
First, we have 2k ≡ 821k ≡ x2 + 1 (mod 3), and since 0 and 1 the only squares
modulo 3 it follows that 2k 6≡ 0 (mod 3). So from the list of possible values for k
we can eliminate the multiples of 3. This reduces the number of possibilities from
204 to 136. Similarly, since we have k ≡ 821k ≡ x2 + 1 ≡ 1 or 2 (mod 4), we can
eliminate values of k that are congruent to 0 or 3 modulo 4. This further halves
the number of possibilities, reducing it to 68. For any odd prime q the number
of possible values for x2 + 1 modulo q is (q + 1)/2, which is about half the size
of Zq. So considering the equation modulo q is likely to approximately halve the
number of possible values for k.
Let us do this carefully. We have established that k nust be congruent to 1 or 2
modulo 3 and to 1 or 2 modulo 4. These facts can be combined to say that k is
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congruent to 1, 2, 5 or 10 modulo 12. We have k ≡ 821k ≡ x2 + 1 (mod 5), and
so k ≡ 1, 2 or 0 (mod 5). Combined with our previous information this tells us
that modulo 60 there are just 12 possibilities for k: they are 1, 2, 5, 10, 17, 22,
25, 26, 37, 41, 46 and 50. We also have 2k ≡ 821kequiv1, 2, 3 or 5 (mod 7), and
so k ≡ 1 4 5 or 6 (mod 7). Let us now write down explicitly all the possibilities
that remain. They are 1, 5, 22, 25, 26, 41, 46, 50, 61, 62, 82, 85, 97, 106, 110, 125,
130, 137, 145, 146, 166, 181, 190, 197 and 202. It is by now feasible to compute
821k − 1 for all these values of k until one is found for which the answer is a
square. Or we can continue eliminating possibilities by the same method we have
been using. Note also that if q is a prime that is congruent to 3 modulo 4 then
x2 + 1 cannot be congruent to 0 modulo q; so 821k cannot be divisible by any
such q. We may therefore eliminate from our list of possible k’s any number that
has a prime factor congruent to 3 modulo 4. This gets rid of 22, 46, 62, 110, 145,
166 and 190.
We have 8k ≡ 1, 2, 5, 10, 6 or 4 (mod 11), and so k ≡ 7, 3, 2, 4, 9 or 6 (mod 11).
And 2k ≡ 1, 2, 5, 10, 4, 0 or 11 (mod 13); so k ≡ 6, 1, 9, 5, 2, 0 or 12 (mod 13).
Our possibilities for k now are 25, 26, 61, 97, 106, 130 and 145. If you have a
calculator to hand, then by this stage you will certainly use it to find which value
works. But I do not have one to hand. Modulo 17 the possible values for x2 + 1
are 1, 2, 5, 10, 0, 9, 3, 16 and 14. If k = 25 then 821k ≡ 5 × 8 ≡ 6, which is
not in the list. If k = 26 then 821k ≡ 45 ≡ 8, also impossible. If k = 61 then
821k ≡ 50 ≡ 16, which is possible. If k = 97 then 821k ≡ 9, possible. If k = 106
then 821k ≡ 3, possible. If k = 130 then 821k ≡ 55 ≡ 4, impossible. If k = 145
then 821k ≡ 45 ≡ 11, impossible. We are down to 61, 97 or 106. Modulo 19 the
corresponding values of 821k are 16, 8 and 6. Now 16 is not a possible value for
x2 + 1 modulo 19, but 8 and 6 are possible. So, it is 97 or 106. If k = 97 then
821k ≡ 16 × 5 ≡ 11 (mod 23). Is 10 a square mod 23? The squares mod 23 are
0, 1, 4, 9, 16, 2, 13, 3, 18, 12, 8 and 6. So 97 is eliminated, and k must be 106. A
quick check reveals that 821× 106 = 87026 = 2952 + 1. So 2952 ≡ −1 (mod 821).
The amount of writing involved in the above explanation is significantly greater
than the amount of actual calculation involved.

We can use the fact that −1 is a square modulo p whenever p is a prime con-
gruent to 1 modulo 4 to prove that every such prime is a sum of two squares.
(We foreshadowed this result in Lecture 10, and it completes the description of
irreducibles of Z[i].) The point is that if p is not a sum of two squares then p is
an irreducible element of Z[i] (see Lecture 10). Given that p ≡ 1 (mod 4), there
exists an x such that p |x2 + 1. So p | (x + i)(x− i) in Z[i]. Since p is irreducible
this implies that either p |x+ i or p |x− i. But this is absurd, since clearly neither
(x + i)/p nor (x− i)/p is in Z[i] (as the imaginary parts of these two numbers are
±(1/p), which are not integers).
It is worth noting that the a and b such that p = a2 + b2 are unique (up to order
and sign), since p = (a+bi)(a−bi) is the factorization of p into irreducibles in Z[i],
and the factorization is unique up to units and associates.
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There is a problem of how to actually find a and b in practice, if p is large. For this
there is a method discovered by Fermat, which he called the “method of descent”.
(Very probably, he incorrectly believed that a generalization of this method could
be used to prove the result that is now known as Fermat’s Last Theorem.)
We illustrate the method for the prime 821. Note that we already know how to
express a multiple of 821 as a sum of two squares: we know that

2952 + 12 = 821× 106. (A)
The aim is to “descend”, and express a smaller multiple of 821 as a sum of two
squares. We look at the equation (A) modulo 106. Since 295 ≡ (−23) (mod 106)
we have that (−23)2 + 12 ≡ 0 (mod 106). Evaluating the left hand side explicitly,
and dividing by 106, we find that

(−23)2 + 12 = 530 = 5× 106. (B)
I strongly recommend that when doing one of these examples, you make sure that
the terms on the left hand side of equation (B) are kept in the same order as the
terms on the left hand side of equation (A) to which they correspond. In the above
example, the terms 2952 and (−23)2 correspond since 295 ≡ −23 (mod 106). Note
also that I have retained the minus sign, even though (−23)2 is, of course, the
same as 232. This is to ensure that the next step works out correctly.
We multiply equations (A) and (B), obtaining

(2952 + 12)((−23)2 + 12) = 821× 5× 1062,

and use the formula (a2 + b2)(c2 + d2) = (ad− bc)2 + (ac + bd)2. So we obtain
(295× 1− 1× (−23))2 + (295× (−23) + 1× 1)2 = 5× 821× 1062.

Do not evaluate the right hand side! We want it in factorized form. The point is
that both the squared factors on the left hand side are guaranteed to be divisible by
1062, and so 1062 will cancel from the equation. Indeed, 295+23 = 318 = 3×106,
and −295× 23 + 1 = −6784 = −64× 106. So we now have

32 + 642 = 821× 5, (A′)
and we have completed one descent.
Modulo 5 equation (rmA′) gives (−2)2 + (−1)2 ≡ 0, and computing the left hand
side exactly yields

(−2)2 + (−1)2 = 1× 5. (B′)

Multiplying (A′) and (B′) gives
(32 + 642)((−2)2 + (−1)2) = 821× 52,

and so
(3× (−1)− 64× (−2))2 + (3× (−2) + 64× (−1))2 = 821× 52.

Now because we made sure that the expressions on left hand sides (A′) and (B′)
are identical modulo 5 it is guaranteed that 52 will cancel from this. Indeed
(−3 + 128) = 25× 5 and −6− 64 = −14× 5, and so

252 + 142 = 821,
expressing 821 as a sum of two squares, as desired.
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