Week 6 Summary

Lecture 11

We have shown that if a and b are integers such that $a^2 + b^2$ is prime then a + bi is an irreducible element of $\mathbb{Z}[i]$, and we have also shown that that if p is a prime that is not a sum of two squares then $\pm p$ and $\pm pi$ are irreducible in $\mathbb{Z}[i]$.

***Proposition:** Every irreducible element of $\mathbb{Z}[i]$ has one or other of these two forms.

Suppose that (x, y, z) is a basic Pythagorean triple. Any prime that is a divisor of both x and z is a divisor of $z^2 - x^2 = y^2$, and hence a divisor of y. But since our Pythagorean triple (x, y, z) is basic, there is no integer greater than 1 dividing all three of x, y and z. So gcd(x, z) = 1. Since x is odd and y even it follows that z is odd. So $gcd(4x^2, z^2) = 1$. Now suppose that $\gamma \in \mathbb{Z}[i]$ is a gcd of x + iy and x - iy. Then γ divides (x + iy) + (x - iy) = 2x. Taking complex conjugates, we deduce that also $\overline{\gamma} \mid 2x$. So $\gamma \overline{\gamma} \mid (2x)^2$. That is, $N(\gamma) \mid 4x^2$. Also, since $\gamma \mid (x + iy)$ and $\overline{\gamma} \mid (x - iy)$ it follows that $\gamma \overline{\gamma} \mid (x + iy)(x - iy) = x^2 + y^2 = z^2$. So $N(\gamma) \mid z^2$, and therefore $N(\gamma) \mid \gcd(4x^2, z^2) = 1$. Hence γ is a unit: we have shown that x + iy and x - iy are coprime Gaussian integers. But their product is a square (since $(x + iy)(x - iy) = z^2$), and it follows from the unique factorization theorem for $\mathbb{Z}[i]$ that if the product of two coprime Gaussian integers is a square then they are each squares, up to unit factors. So $x + iy = u_1\zeta_1^2$ and $x - iy = u_2\zeta_2^2$ for some units u_1, u_2 and some $\zeta_1, \zeta_2 \in \mathbb{Z}[i]$.

Writing $\zeta_1 = a + bi$, and noting that u_1 must be 1, -1, *i* or -i, we have $x + iy = \pm((a^2 - b^2) + 2abi)$ or $x + iy = \pm(-2ab + (a^2 - b^2)i)$. Since *x* is odd, we must have the former case rather than the latter. Interchanging *a* and *b* if necessary, we see that $x = a^2 - b^2$ and y = 2ab for some integers *a* and *b*.

We turn next to an investigation of powers in \mathbb{Z}_n . When n = 7, for example, the successive powers of 3 are 3, 2, 6, 4, 5, and 1, repeating in a periodic sequence of period six. The powers of 2 form a sequence of period three, and the powers of 6 a sequence of period two. It turns out that if gcd(a, n) = 1 then there is always a positive integer k such that $a^k \equiv 1 \pmod{n}$. The least such k is called the *order* of a modulo n, denoted by $ord_n(a)$. The sequence of powers of a in \mathbb{Z}_n has period $ord_n(a)$. One can check easily that $ord_7(a)$ is a divisor of six in each case; this is a special case of a result known as the *Fermat-Euler Theorem*.

Lecture 12

We adopt the convention that if S is any finite set then |S| denotes the number of elements of S.

The Euler phi function is the function $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ defined as follows: $\varphi(n)$ is the number of positive integers a with $1 \leq a \leq n$ and gcd(a, n) = 1. That is, $\varphi(n) = |\{a \in \mathbb{Z} \mid 1 \leq a \leq n \text{ and } gcd(a, n) = 1\}|.$

Recall that gcd(a, n) = 1 if and only if a has an inverse in \mathbb{Z}_n . In other words, gcd(a, n) = 1 if and only if a is a unit in \mathbb{Z}_n . Denote the set of units of \mathbb{Z}_n by \mathbb{Z}_n^* . The definition of $\varphi(n)$ can then be restated as $\varphi(n) = |\mathbb{Z}_n^*|$.

For example, $\mathbb{Z}_{15}^* = \{1, 2, 4, 7, 8, 11, 13, 14\}$, and so $\varphi(15) = 8$. Similarly one can check that $\varphi(1) = 1$, $\varphi(2) = 1$, $\varphi(3) = 2$, $\varphi(4) = 2$, $\varphi(5) = 4$, $\varphi(6) = 2$, $\varphi(7) = 6$, $\varphi(8) = 4$, $\varphi(9) = 6$. There is a formula for $\varphi(n)$ in terms of the prime factorization of n; we shall come to this later.

*Fermat-Euler Theorem: Let $a, n \in \mathbb{Z}^+$ with gcd(a, n) = 1. Then $a^{\varphi(n)} \equiv 1 \pmod{n}$. Moreover, $ord_n(a)$ is a divisor of $\varphi(n)$.

(The proof can be found in Walters, or indeed any elementary text.)

A primitive root modulo n is an integer a coprime to n having the property that $\operatorname{ord}_n(a) = \varphi(n)$. For example, since $\operatorname{ord}_7(3) = 6 = \varphi(7)$, we see that 3 is a primitive root modulo 7. When a is a primitive root modulo n, the powers of a in \mathbb{Z}_n form a periodic sequence of period $\varphi(n)$. Since all the powers of a lie in \mathbb{Z}_n^* , which has only $\varphi(n)$ elements altogether, it follows that all elements of \mathbb{Z}_n^* are powers of a. For example, the powers of 2 in \mathbb{Z}_{25} , from 2^1 to 2^{20} , are as follows: 2, 4, 8, 16, 7, 14, 3, 6, 12, 24, 23, 21, 17, 9, 18, 11, 22, 19, 13 and 1. We exhausted all 20 elements of \mathbb{Z}_{25}^* before reaching the point at which the sequence repeats. So 2 is a primitive root modulo 25.

Primitive roots modulo n do not exist for all values of n. They exist when n is prime or the square of a prime, or twice a prime, but not otherwise. They are not easy to find: basically, one just uses trial and error to find them.

Consider the decimal representation of a rational number p/q, where p and q are coprime positive integers with p < q. As is well known, this has the form $0.a_1a_2...a_n\overline{a_{n+1}a_{n+2}...a_{n+r}}$, where the overline notation indicates a repeating block. The values of n and r for a given decimal expansion of p/q are not unique: for example, $0.23\overline{154}$ can also be written as $0.23\overline{1541541}$. To avoid this, we insist on choosing n and r to be as small as possible. We then call n and r, respectively, the lengths of the non-periodic and periodic parts of the decimal expansion.

***Proposition:** If $q = 2^a 5^b m$, where gcd(m, 10) = 1, then the non-periodic part of the decimal expansion of p/q has length max(a, b), and the periodic part has length $ord_m(10)$. (Note that it is assumed that gcd(p,q) = 1 and 0).