THE UNIVERSITY OF SYDNEY

MATH2902 Vector Spaces

(http://www.maths.usyd.edu.au/u/UG/IM/MATH2902/)

Semester1, 2001

Lecturer: R. Howlett

Tutorial 8

- 1. Use $\det(AB) = \det A \det B$ and $\det^{t}A = \det A$ to prove that the determinant of a real orthogonal matrix must be ± 1 . (A 3×3 real orthogonal matrix corresponds to a rotation of the coordinate axes if its determinant is 1; orthogonal matrices of determinant -1 change right-handed coordinate systems into left-handed ones.)
- 2. Find a rotation of the coordinate axes which changes the equation of the given quadric surface to the form $a(x')^2 + b(y')^2 + c(z')^2 = \text{constant}$.
 - (i) $6x^2 + 4y^2 4z^2 + 2xy 6xz + 2yz = 140$
 - (*ii*) $4x^2 14y^2 + 12z^2 2xy 2xz 10yz = -780$
 - (*iii*) $4x^2 + 12y^2 + 2z^2 + 2xy + 2xz + 6yz = 104$
- **3.** A square complex matrix A is said to be *normal* if it commutes with A^* . (That is, $AA^* = A^*A$. Here $A^* \stackrel{\text{def}}{=} {}^{\mathrm{t}}\overline{A}$.) Prove that if A is normal and U is unitary then U^*AU is normal.
- 4. Let A be a complex $n \times n$ matrix and suppose that there exists a unitary matrix U such that U^*AU is diagonal. Prove that $A(A^*) = (A^*)A$. (Hint: Let $D = U^*AU$, and prove first that $D(D^*) = (D^*)D$.)
- **5.** (i) Suppose that $A \in Mat(n \times n, \mathbb{C})$ is normal and upper triangular. Prove that A is diagonal.
 - (Hint: 'Upper triangular' means $A_{ij} = 0$ for i > j. Prove that the (1,1)-entry of $A(A^*)$ is $\sum_{i=1}^{n} |A_{1j}|^2$ whereas the (1,1)-entry of $(A^*)A$ is $|A_{11}|^2$, and deduce that $A_{1j} = 0$ for all j > 1. Then consider the (2,2)-entries of $A(A^*)$ and $(A^*)A$, then (3,3), and so on.)
 - (*ii*) It can be shown that for any $A \in Mat(n \times n, \mathbb{C})$ there exists a unitary matrix U such that U^*AU is upper triangular. (The proof of this is very similar to the proof of Theorem 5.19.) Use this fact together with Exercise 3 and Part (*i*) to prove that for every normal matrix A there exists a unitary U with U^*AU diagonal.