
The Fundamental Theorem of Algebra

Let f(z) = α0 +α1z+α2z
2 + · · ·+αnz

n, where n is a positive integer, αj ∈ C
for each j, and αn 6= 0. The Fundamental Theorem of Algebra says that there
exists a γ ∈ C such that f(γ) = 0.

Note that if f(γ1) = 0 then z − γ1 is a factor of f(z), and so we may write
f(z) = (z − γ1)g(z), where g is a polynomial of degree n − 1. If n − 1 > 1 then
the same reasoning yields a factor z − γ2 of g(z), and so it follows by repeated
applications of the argument that f(z) may be express as a product of n factors
of degree 1: f(z) = α(z − γ1)(z − γ2) · · · (z − γn).

It is clear that a polynomial of odd degree with real coefficients has at least
one real root. This is a trivial application of the Intermediate Value Theorem: if
p is such a polynomial then p(x) →∞ as x→∞ and p(x) → −∞ as x→ −∞ (or
the other way round if the leading coefficient of p is negative), and so there must
be a point where p(x) changes sign. It is natural to look for some generalization
of this argument that can be applied to complex polynomial functions. Now
investigation of complex functions of a complex variable is made more difficult
by the fact that to graph w = f(z) one would need to use four real dimensions,
one each for the real and imaginary parts of z and of w. Nevertheless, it may
be true that a four-dimensional being would consider the Fundamental Theorem
of Algebra just as obvious as the above statement about real polynomials of odd
degree.

The idea we shall apply is as follows. Imagine two complex planes, one
for z and one for w. For each point in the z-plane the polynomial f gives us a
corresponding point w = f(z) in the w-plane. Now imagine z traversing a curve
in its plane. The corresponding values of w yield a curve in the other plane. For
example, if r is a fixed nonnegative real number, then the set { z | |z| = r } is
a circle in the z-plane, and its image, the set { f(z) | |z| = r }, will be some
closed (possibly self-intersecting) curve in the w-plane. The circle in the z plane
can be given parametrically as z = r(cos θ + i sin θ), where θ ∈ [0, 2π]. And
w = f(r(cos θ + i sin θ)), for θ ∈ [0, 2π], gives a parametric form for the image of
this circle in the w-plane.

The simplest case to consider is the polynomial h(z) = zn. Since

(r(cos θ + i sin θ))n = rn(cos(nθ) + i sin(nθ)),

and since nθ goes from 0 to 2πn as θ goes from 0 to 2π, we see that in this case
w moves n times round a circle of radius rn as z moves once around a circle of
radius r. If we modified this to h(z) = αzn, where α 6= 0, the curve in the w-plane
would have radius |α|rn, the initial and final point would be αrn, and it would
still be traversed n times.

Now consider the images of the circles { z | |z| = r } under the polynomial
function f(z) = α0 +α1z+α2z

2 + · · ·+αnz
n. Let us write Cr = { f(z) | |z| = r },

the image curve in the w-plane. If r = 0 then of course the circle reduces to a
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single point and its image C0 is also a single point, namely f(0) = α0. We can
assume that α0 6= 0, for otherwise γ = 0 is a root of f , and nothing more needs to
be proved. The curve Cr clearly varies continuously with r, in some sense which
we shall not attempt to make rigorous. So we can ensure that Cr is contained in
any given small neighbourhood of α0 by choosing r to be sufficiently small. In
particular, if the small neighbourhood does not contain the origin the origin then
the number of times that Cr winds around the origin, in the sense described in
the next paragraph, is zero.

Here is an intuitive account of what it means for a closed curve in the w-
plane to wind around the origin a number of times. Assuming that the curve
does not pass through the origin, the argument, arg(w), is defined for all points
w on the curve. (Recall that the argument of w 6= 0 is the angle ψ such that
w = |w|(cosψ + i sinψ).) Now the argument is a many-valued function, but we
may choose one particular value for the argument of the initial point and require
that the argument varies continuously as we move along the curve. Since the
final point is the same as the initial point, the value of the argument at the final
point will differ from the initial value by 2πk, for some integer k. This integer is
the winding number. Observe that the winding number is not defined for curves
that pass through the origin, but is defined for all other continuous closed curves.
And continuously deforming a continuous closed curve cannot change the winding
number, unless the deformation process at some stage gives a curve that passes
through the origin. Intuitively, the winding number changes by 1 when a part of
the curve is pushed across the origin.

Now we have seen that if r is small enough then Cr has a winding number
of 0. But if r is large enough the absolute value of αnz

n will exceed the absolute
value of α0 +α1z+α2z

2 + · · ·+αn−1z
n−1 for all z with |z| = r. In fact, as r →∞

the ratio of the absolute values of these two tends to infinity. The term αnz
n

dominates the other terms in f(z). This means that the winding number for the
curve Cr must be the same as it would have been if f(z) were just αnz

n. In effect,
what we are saying is that, when viewed from a distance, for large enough r the
curve Cr is indistinguishable from a circle of very large radius traversed n times.
But this winding number is n; so the continuous deformation of Cr from r close to
zero to close to infinity must at some stage yield a curve with no winding number,
for otherwise the winding number would have to have remained contstant at zero.
So Cr passes through the origin for some value of r, and this means that f(z) = 0
for some z on the circle { z | |z| = r }.

To illustrate the above argument we have plotted the curves Cr, for certain
values of r, when f(z) = (1 + i)z4 + 3z3 − iz + (2 + i). For the first five diagrams
1 cm represents 1 unit, and the values of r are (respectively) 0.2, 0.4, 0.5, 0.7
and 0.8. Clearly Cr passes through the origin for some value of r a little larger
than 0.7.

The next seven diagrams are drawn to different scales chosen so as to keep
the diagrams small. The values of r and the scales chosen are, respectively, as

–2–



follows: r = 1.0 and 1 unit is 0.25 cm; r = 1.2 and 1 unit is 0.13 cm; r = 1.4 and
1 unit is 0.07 cm; r = 1.8 and 1 unit is 0.032 cm; r = 3.1 and 1 unit is 0.00485
cm; r = 6.2 and 1 unit is 0.0004 cm; r = 12.4 and 1 unit is 0.000025 cm.

You may also look at the animated display which is meant to show the the
continous deformation of Cr as r changes.
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