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1. Let H and K be subgroups of a finite group G, and let m be the order of H
and n the order of K. By Question 4 of Tutorial 7, the intersection H ∩K is
also a subgroup. If H ∩K has order d, prove that d is a common divisor of
m and n.

Solution.

Because H ∩K is a subgroup of H it follows from Lagrange’s Theorem that
d divides m. Similarly, since H ∩ K is a subgroup of K it follows that d
divides n. Thus d divides both m and n.

2. If m = 31 and n = 64 in Question 1, what can you deduce about H ∩K?

Solution.

Since 31 and 64 have no common divisors greater than 1, the order of H ∩K
must be 1. Since H ∩K is a subgroup it must contain the identity element e,
and since its order is 1 it contains no other elements. Thus H ∩K = {e}.

3. If m = 21 and n = 14 in Question 1, show that H ∩K is a cyclic group.

Solution.

Recall that a group is cyclic if and only if it contains an element whose powers
give all the elements of the group. Such an element is called a generator of
the cyclic group.

The only positive integers that are divisors of both 21 and 14 are 1 and 7;
so these are the only possibilities for #(H ∩ K (the order of H ∩ K). If
#(H ∩K) = 1 then H ∩K = {e}, which is certainly a cyclic group (generated
by e). Alternatively, suppose that #(H ∩ K) = 7. Then we can choose an
element x ∈ (H∩K) with x 6= e. The set of all powers of x is then a subgroup
of H ∩K (called the cyclic subgroup generated by x). Call this subgroup L.
Then #L is a divisor of #(H ∩K) = 7, and #L > 1 since L contains at least
the two distinct elements e and x. So #L = 7, which means that L = H ∩K.
So H ∩K is cyclic, generated by x.
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4. Let G be the group of all nonzero complex numbers under multiplication.
Using the representation of complex numbers as points in the plane, draw a
sketch showing the subgroup H consisting of all complex numbers of modu-
lus 1. Describe also the cosets of H in G.

Solution.

In the Argand diagram the complex numbers of modulus 1 constitute a circle
of radius 1 with the origin as centre. Let t be an arbitrary element of G,
and put a = |t|. Then a is a positive real number. The coset tH consists
of all complex numbers of the form tx, where x ∈ H, and since |x| = 1 for
all x ∈ H we see that |tx| = |t| |x| = a|x| = a. So all elements of tH have
modulus a. Conversely, if u is a complex with |u| = a then u 6= 0 and we have
u = tx, where x = tu−1. Now since a = |u| = |tx| = |t| |x| = a|x| it follows
that |x| = 1; thus x ∈ H, and so u = tx ∈ tH. This shows that all complex
numbers of modulus a lie in tH. Thus the coset tH is a circle of radius a
centred at the origin. Every positive real number a occurs as the modulus of
a nonzero complex number; so we conclude that the set of all cosets of H in
G is the set of all circles of positive radius centred at the origin.

5. Let a be a group element of order 79. Determine the order of a59.

Solution.

Any element of any group must generate a cyclic subgroup of that group. If
the group is finite then the order of the subgroup must also be finite, and by
Lagrange’s Theorem must be a divisor of the order of the group. And if the
cyclic subgroup generated by g has order k then the element g has order k.
In summary, the elements of a finite group all have finite order, and for each
element the order is a divisor of the order of the group.

Recall that a group element g has order k if and only if k is the least positive
integer m such that gm = e (the identity). If g has order k then gm = e if
and only if m is a multiple of k.

We are given that a is an element of a group G and that a has order 79. Thus
am = e if and only if m is a multiple of 79. Let H be the cyclic subgroup of
G generated by a. Then #H = 79. Since a59 is an element of H, the order
of a59 is a divisor of #H = 79. Since 79 is prime, it follows that the order of
a59 is either 79 or 1. If it were 1 then we would have that a59 = e, which is
false since 59 is not a multiple of 79. So the order of a59 is 79.

6. Let D be the group of symmetries of a regular hexagon. Show that any
subgroup of D containing both a reflection and the rotation anticlockwise
through 60◦ must be all of D.
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Solution.

Let ρ be the anticlockwise rotation through 60◦ and let σ be any reflection
symmetry of the hexagon. Let H be the subgroup of D generated by ρ
and σ. Since ρn is a rotation through 60n◦, we see that ρ has 6 distinct
powers (namely, anticlockwise rotations through 0◦, 60◦, 120◦, 180◦, 240◦

and 300◦). The subgroup H contains these 6 elements and also σ. Since σ is
not a rotation—reflections are distinguished from rotations by the fact that
a reflection fixes exactly two points on the perimeter of the hexagon, whereas
non-identity rotations do not fix any and the identity fixes them all—it follows
that H contains at least 7 elements. The order of H is a divisor of the order
of D, which is 12 (since D consist of 6 rotations and 6 reflections). So |H| = 12,
and so H = D.

7. Let H be the group formed by the complex numbers 1, −1, i, −i under
multiplication. Find a group of permutations that is isomorphic to H.

Solution.

These four complex numbers form a cyclic group of order 4, generated by i
(and also generated by −i). All cyclic groups of order 4 are isomorphic to H: if
x is a generator of a cyclic group L of order 4 then the function f :H → L given
by f(i) = x, f(−1) = x2, f(−i) = x3 and f(1) = x4 = e is an isomorphism
(that is, a one-to-one correspondence that preserves multiplication). So to
answer this question we just have to find a permutation x of order 4. The
most obvious choice is the 4-cycle x = (1, 2, 3, 4). Then x2 = (1, 3)(2, 4) and
x3 = (1, 4, 3, 2) (and x4 = id).

There are other possibilities too: for example (1, 2, 3, 4)(5, 6) has order 4:
this would give an isomorphism with i ↔ (1, 2, 3, 4)(5, 6), −1 ↔ (1, 3)(2, 4),
−i ↔ (1, 4, 3, 2)(5, 6) and 1 ↔ id. In general, a permutation has order 4 if
and only if its expression as a product of disjoint cycles consists of 4-cycles
and 2-cycles, with at least 1 4-cycle.

8. (i) Let G be an abelian group. Suppose that x, y ∈ G, x has order 2 and y
has order 3. Show that xy has order 6.

(ii) Find an example of a group G containing an element x of order 2 and
an element y of order 3 such that G contains no elements of order 6.
(Note that G must be non-abelian, by Part (i).)

Solution.

(i) If xy = e (the identity) then x = xe = x(xy) = x2y = ey = y, since we
are given that x has order 2 (and so x2 = e). But x 6= y since x has
order 2 and y has order 3. So xy 6= e.
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As G is abelian, xy = yx. So (xy)2 = xyxy = xxyy = x2y2 = ey2 = y2.
Note that y2 6= e since y has order 3, and 2 is not a multiple of 3. So
(xy)2 6= e.
Similarly, (xy)3 = xyxyxy = x3y3 = x, since x3 = x and y3 = e. And
x 6= e since x has order 3, not 1. So (xy)3 6= e.
Since (xy)6 = xyxyxyxyxyxy = x6y6 = e, the order of xy must be a
divisor of 6. It is not 1, 2 or 3 since xy, (xy)2 and (xy)3 are all not equal
to e. So the order of xy is 6.

(ii) The group G = Sym(3) has the required property. It has 6 elements:
three transpositions (1, 2), (1, 3) and (2, 3), which all have order 2, two 3-
cycles (1, 2, 3) and (1, 3, 2), both of order 3, and the identity (of order 1).
It has no elements of order 6.

9. Let G be a finite group and H, K subgroups of G such that H ∩ K = {e}
(where e is the identity). Let m, n be the orders of H and K. Show that the
mn products hk, where h is in H and k is in K, give mn distinct elements
of G. (Hint: If h1k1 = h2k2 then k1k

−1
2 = h−1

1 h2, and this element is both in
K and in H.)

Solution.

Let h1, h2 ∈ H and k1, k2 ∈ K, and suppose that h1k1 = h2k2. Then
h−1

1 (h1k1)k−1
2 = h−1

1 (h2k2)k−1
2 . But h−1

1 h1k1k
−1
2 = ek1k

−1
2 = k1k

−1
2 , and

similarly h−1
1 (h2k2)k−1

2 = h−1
1 h2. So k1k

−1
2 = h−1

1 h2. Call this element t.
Since h1, h2 ∈ H and H is closed under the formation of inverses and under
multiplication, the element h−1

1 h2 is in H. So t ∈ H. Similarly t = k1k
−1
2 ∈ K.

So t ∈ H ∩K, and so t = e since we are given that H ∩K = {e}.
Thus k1k

−1
2 = e, and so k1 = k1(k−1

2 k2) = (k1k
−1
2 )k2 = k2. Similarly, since

h−1
1 h2 = e it follows that h2 = h1h

−1
1 h2 = h1.

The above calculations show that as h runs through all m elements of H
and k runs through all n elements of K, distinct pairs (h, k) give distinct
products hk. So we get mn distinct elements of G, as claimed.


