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1. Let G be a cyclic group generated by an element a of order 50.

(i) Find the orders of all the elements of G.
(ii) List the elements of G that form a subgroup of order 10.
(iii) Prove that a13k equals the identity if and only if k is a multiple of 50.

Deduce that a13 generates G.
(iv) Find a value of k such that a13k = a.
(v) Find all the elements of G of order 10.
(vi) Show that a5 can be expressed as a power of a35.

Solution.

(i) The order of an is the least positive integer k such that ank = e. This
is the least positive integer k such that nk is a multiple of 50. So if k is
the order of an then nk is least common multiple of n and 50. Thus we
obtain the following formula:

Order(an) =
lcm(n, 50)

n
. (1)

For example, consider the case n = 4. The lcm of 4 and 50 is the first
term in the sequence 4, 8, 12, 16, 20, . . . that is divisible by 50. It is
easy to see that this is 100. So the order of a4 is 100

4 = 25. Similarly,
to find the order of a35 we can look at the sequence of multiples of 35,
namely 35, 70, 105, 140, 175, . . . , and find the first one that is a multiple
of 50. It is not hard to see that the answer is 350. (Alternatively, one
can look at the sequence of multiples of 50 and find the first one that is
divisible by 35.) So the order of a35 is 350

35 = 10.
If d is an integer that is a divisor of both 50 and n then n

d and 50
d

are both integers, and so the number n
d 50 = n 50

d is a multiple of both
n and 50. The least common multiple of n and 50 is found by taking d
to be the greatest common divisor of n and 50. That is,

lcm(n, 50) =
50n

gcd(n, 50)
.

Using this the equation (1) above can be rewritten as

Order(an) =
50

gcd(n, 50)
. (2)

For any given value of n between 1 and 50, it is very easy to determine
the gcd of n and 50: the only divisors of 50 are 1, 2, 5, 10, 25 and 50,
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and one can quickly find the largest one of these that is a divisor of n.
The gcd of n and 50 is 1 for the following values of n: 1, 3, 7, 9, 11, 13,
17, 19, 21, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47 and 49. So a1, a3, a7,
etc. all have order 50. The gcd of n and 50 is 2 for the following values
of n: 2, 4, 6, 8, 12, 14, 16, 18, 22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 46
and 48. The corresponding powers of a all have order 50

2 = 25. The gcd
of n and 50 is 5 for n = 5, 15, 35, 45. The corresponding powers of a
have order 50

5 = 10. The gcd of n and 50 is 10 for n = 10, 20, 30, 40; so
a10, a20, a30 and a40 have order 5. Finally, a25 has order 2 and a50 has
order 1.

(ii) The powers of a5 clearly form a subgroup of order 10. The elements of
this subgroup are a5, a10, a15, a20, a25, a30, a35, a40, a45 and a50 = e.
Note that all the elements of order 10 lie in this subgroup. It is in fact
the only subgroup of G of order 10.

(iii) Since gcd(13, 50) = 1, 13k is divisible by 50 if and only if k is divisible
by 50. That is, a13 has order 50 (as we already noted above). So the
subgroup of G generated by a13 must have 50 elements. But G itself
only has 50 elements; so a13 generates the whole of G. The successive
powers of a13 are a13, a26, a39, a52 = a2, a15, a28, a41, a54 = a4, a17,
. . . . Continuing this process we find that we get a1 after 27 steps.
(Alternatively, one can find the smallest number of the form 50k + 1
that is a multiple of 13. It is 351 = 13× 27.)

(iv) See Part (iii).
(v) (a35)3 = a105 = a5.

2. Let G be a group and let ∼ be the relation on G defined as follows: for all
x, y ∈ G,

x ∼ y if and only if x = t−1yt for some t ∈ G.

Prove that ∼ is an equivalence relation. (This relation is called conjugacy.
If x ∼ y then x and y are said to be conjugate. The equivalence classes are
called conjugacy classes.)

Solution.

Let e be the identity element of G. For all x ∈ G, x = exe = e−1xe (since
e = e−1). This shows that x ∼ x, for all x ∈ G. So the relation ∼ is reflexive.
Suppose that x, y ∈ G with x ∼ y. Then x = t−1yt for some t ∈ G. This
equation gives

txt−1 = tt−1ytt−1 = eye = y;

that is, y = u−1xu, where u = t−1. Hence y ∼ x. So we have shown that
y ∼ x whenever x ∼ y; that is, ∼ is symmetric.
Suppose that x, y, z ∈ G with x ∼ y and y ∼ z. Then there exist t, u ∈ G
with x = t−1yt and y = u−1zu. Substituting the second of these equations
into the first gives x = t−1(u−1zu)t = (ut)−1z(ut) (since (ut)−1 = t−1u−1).
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Hence x ∼ z. Since this holds whenever x ∼ y and y ∼ z, we have shown that
∼ is transitive.

3. Let G = Sym(3), and consider the conjugacy relation ∼ defined in Question 2.

(i) Show that (1, 2, 3) ∼ (1, 3, 2) and (1, 2) ∼ (2, 3).
(ii) Find all the conjugacy classes in G.

Solution.

(i) Recall that x−1(1, 2, 3)x = (1x, 2x, 3x). (See Question 2 of Computer
Tutorial 6.) If we put x = (2, 3) then 1x = 1, 2x = 3 and 3x = 2, and so
x−1(1, 2, 3)x = (1, 3, 2). Thus (1, 3, 2) ∼ (1, 2, 3), as required.
Similarly, x−1(1, 2)x = (1x, 2x), and we can ensure that this equals
(2, 3) by choosing x to be such that 1x = 2, 2x = 3 and 3x = 1. So
(1, 2) ∼ (2, 3).

(ii) We have shown in Part (i) that (1, 2) ∼ (2, 3), and it is equally easy to
show that (1, 2) ∼ (1, 3). So all three 2-cycles in Sym(3) are conjugate
to one another. Since x−1(1, 2)x = (1x, 2x), we see that any conjugate
of (1, 2) has to be a 2-cycle; so there are no other elements in this
conjugacy class. So the three 2-cycles (1, 2), (2, 3), (1, 3) form one of
the conjugacy classes of G. Similarly, since x−1(1, 3, 2)x = (1x, 2x, 3x),
any conjugate of (1, 3, 2) has to also be a 3-cycle. There are only two
3-cycles in Sym(3), and we showed in Part (i) that they are conjugate.
Thus (1, 2, 3), (1, 3, 2) form a conjugacy class in G. The one remaining
element of G is the identity, which is not conjugate to anythingbut itself.
Thus G has exactly three conjugacy classes:

{id}, {(1, 2), (2, 3), (1, 3)}, {(1, 2, 3), (1, 3, 2)}.

4. Let G be a group and y ∈ G. Show that the set
CG(y) = {x ∈ G | x−1yx = y }

is a subgroup of G. (The subgroup CG(y) is called the centralizer of y in G.)
Show that if t, u ∈ G are such that t−1yt = u−1yu then tu−1 ∈ CG(y), and
hence t ∈ CG(y)u. Does it follow that u ∈ CG(y)t?

Solution.

Let a, b ∈ CG(y). Then a−1ya = y and b−1yb = y. So
(ab)−1y(ab) = b−1a−1yab = b−1(a−1ya)b = b−1yb = y,

from which it follows that ab ∈ CG(y). We have shown that ab is in CG(y)
whenever a and b are in CG(y). Thus CG(y) satisfies (SG1).
If e is the identity element of G then we have e−1 = e, and

e−1ye = e(ye) = ey = y.

This shows that e ∈ CG(y). Thus CG(y) satisfies (SG1).
Let a ∈ CG(y). Then y = a−1ya, and so

aya−1 = a(a−1ya)a−1 = (aa−1)y(aa−1) = eye = y.
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Thus (a−1)−1ya−1 = y, which shows that a−1 ∈ CG(y). Since this holds
whenever a ∈ CG(y), we have shown that CG(y) satisfies (SG3). So CG(y) is
a subgroup of G.
If t−1yt = u−1yu then ut−1ytu−1 = uu−1yuu−1 = eye = y. That is, if
t−1yt = u−1yu then (tu−1)−1y(tu−1) = y, and this says that tu−1 ∈ CG(y).
If tu−1 ∈ CG(y), then the equation t = (tu−1)u shows that t ∈ CG(y)u.
We have just shown that if t−1yt = u−1yu then t ∈ CG(y)u. Our hypothesis
here is not altered by swapping t and u: the equations t−1yt = u−1yu and
u−1yu = t−1yt say the same thing. So the argument that proves t ∈ CG(y)u
also proves that u ∈ CG(y)t (just by swapping t and u at every step).

5. Let y = (1, 2, 3) ∈ Sym(4), and let C be the centralizer of y in Sym(4).

(i) Find all the elements of C.
(ii) Find all the elements of the coset C(3, 4).
(iii) Find all the elements x ∈ G such that x−1yx = (1, 2, 4).

Solution.

Note that since we are dealing with Sym(4), the permutation (1, 2, 3) is really
(1, 2, 3)(4): the number 4 is a 1-cycle, or fixed point, of y. Remember also
that any of the numbers in a cycle can be written first: (2, 3, 1) and (3, 1, 2)
are both the same as (1, 2, 3). Thus y = (1, 2, 3)(4) = (2, 3, 1)(4) = (3, 1, 2)(4).

(i) If x is an element of Sym(4), then x ∈ C if and only if x−1yx = y. That
is, x ∈ C if and only if x−1(1, 2, 3)(4)x = (1, 2, 3)(4). Now, as we saw in
Question 2 of Computer Tutorial 6, x−1(1, 2, 3)(4)x = (1x, 2x, 3x)(4x).
So x ∈ C if and only if

(1x, 2x, 3x)(4x) = (1, 2, 3)(4) = (2, 3, 1)(4) = (3, 1, 2)(4).

We see that there are three solutions. They are

1x = 1, 2x = 2, 3x = 3, 4x = 4, giving x = id;
1x = 2, 2x = 3, 3x = 1, 4x = 4, giving x = (1, 2, 3)(4);
1x = 3, 2x = 1, 3x = 2, 4x = 4, giving x = (1, 3, 2)(4).

Thus the three elements of C are id, (1, 2, 3) and (1, 3, 2).
(ii) The three elements of C(3, 4) are id(3, 4), (1, 2, 3)(3, 4) and (1, 3, 2)(3, 4).

Thus
C(3, 4) = {(3, 4), (1, 2, 4, 3), (1, 4, 3, 2)}.

(iii) We need (1x, 2x, 3x)(4x) = (1, 2, 4)(3) = (2, 4, 1)(3) = (4, 1, 2)(3). The
three solutions are

1x = 1, 2x = 2, 3x = 4, 4x = 3, giving x = (3, 4);
1x = 2, 2x = 4, 3x = 1, 4x = 3, giving x = (1, 2, 4, 3);
1x = 4, 2x = 1, 3x = 2, 4x = 3, giving x = (1, 4, 3, 2).


