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1. Let G be the cyclic group generated by an element a of order 8.

(i) Write down the distinct elements of G. What is the order of G?

(ii) Determine the order of each element of G.

(iii) Check that, in this group, any two elements that have the same order
always generate the same cyclic subgroup.

(iv) Which elements of G generate all of G?

(v) How many distinct right translates of the set {a, a3, a5, a7} are there
in G? (List them all.) Are there two distinct translates of this set with
elements in common? Is this set a coset of a subgroup?

(vi) Repeat the previous part for each of the sets {a, a5}, {a, a3, a5} and
{a, a4}.

Solution.

(i) The distinct elements of G are e (the identity), a, a2, a3, a4, a5, a6

and a7. There are 8 elements: G has order 8.

(ii) e has order 1, and a has order 8. To find the order of a2, compute its
successive powers until you get the identity. We find (a2)2 = a4 6= e,
(a2)3 = a6 6= e, (a2)4 = a8 = e. So a2 has order 4. Now do a3

similarly: a3 6= e, (a3)2 = a6 6= e, (a3)3 = a9 = a 6= e, (a3)4 = a4 6= e,
(a3)5 = a7 6= e, (a3)6 = a2 6= e, (a3)7 = a5 6= e, (a3)8 = a8 = e. So
a3 has order 8. Now a4: we have a4 6= e but (a4)2 = a8 = e; so a4 has
order 2. The successive powers of a5 are a5, a2, a7, a4, a, a6, a3, e. So
a5 has order 8. The successive powers of a6 are a6, a4, a2, e. So a6 has
order 4. The successive powers of a7 are a7, a6, a5, a4, a3, a2, a, e. So
a7 has order 8.

(iii) From the calculations in Part (ii), a2 and a6 are the only elements of
order 4. The elements of G that are powers of a2 are e, a2, a4 and a6.
The same elements are powers of a6. So 〈a2〉 = 〈a6〉 = {e, a2, a4, a6}.
We also found that a, a3, a5 and a7 all have order 8. Moreover, for each
of these elements we see that the powers of the element yield all the
elements of G. So a, a3, a5 and a7 all generate the same subgroup of G:
they all generate G itself. There are no other instances of two elements
of G having the same order.

2

(iv) The elements that generate G are a, a3, a5 and a7 (see Part (iii)).

(v) Let W = {a, a3, a5, a7}. Then Wa = {wa | w ∈ W } = {a2, a4, a6, e},
and Wa2 = {a3, a5, a7, a} = W . Thus W = We = Wa2 = Wa4 = Wa6,
and W 6= Wa = Wa3 = Wa5 = Wa7. There are exactly two distinct
right translates of W , and they have no elements in common. The set
Wa is a subgroup—it is the cyclic subgroup generated by a2—and W
and Wa are the cosets of this subgroup.

(vi) The translates of {a, a5} are itself, {a2, a6}, {a3, a7} and {a4, e}. They
are all disjoint from one another, and they are the costs of the subgroup
{e, a4}. The translates of {a, a3, a5} are itself, {a2, a4, a6}, {a3, a5, a7},
{a4, a6, e}, {a5, a7, a}, {a6, e, a2}, {a7, a, a3} and {e, a2, a4}. They are
not the cosets of a subgroup. It is possible to find two of these translates
which have nonempty intersection; indeed, each element of G lies in
three distinct translates. Similarly, the set {e, a4} has eight distinct
translates: {a, a4}, {a2, a5}, {a3, a6}, {a4, a7}, {a5, e}. {a6, a}, {a7, a2},
{e, a3}. Each element of G lies in two of them. They are not the cosets
of a subgroup.

2. (i) What are the orders of Sym(4), Sym(5), Sym(6), Sym(7) and Sym(8)?

(ii) What is the order the group of symmetries of a regular pentagon? Is
this group Abelian?

(iii) Give an example of a non-Abelian group of order 14.

Solution.

(i) If σ is a permutation of {1, 2, . . . , n} then 1σ, 2σ, . . . , nσ are the num-
bers 1, 2, . . . , n in some order. There are n possibilities for 1σ. Once
that has been chosen, there are n − 1 possibilities left for 2σ, then
n − 2 for 3σ, and so on. The number of possibilities overall is thus
n(n − 1)(n − 2) . . . 3 · 2 · 1 = n! (factorial n). So the order of Sym(n)
is n!. So #Sym(0) = 1, #Sym(1) = 1, #Sym(2) = 2, #Sym(3) = 6,
#Sym(4) = 24, #Sym(5) = 120, #Sym(6) = 720, #Sym(7) = 5040 and
#Sym(8) = 40320.

(ii) A regular pentagon has 10 symmetries. There are 5 rotational symme-
tries: if θ = 2π/5 then the anticlockwise rotations (about the centre)
through the angles 0, θ, 2θ, 3θ and 4θ are all symmetries. For each ver-
tex there is a straight line passing through that vertex and the centre,
and bisecting the side opposite the vertex. The reflection in this line
is a symmetry of the pentagon. There a 5 such lines, and so we get 5
reflection symmetries to go with the 5 rotations, making 10 symmetries
altogether. But we should prove that there are no others.

Number the vertices 1 to 5, anticlockwise. Any symmetry must take ver-
tex 1 to one of the other vertices; say vertex i. There are five possibilities
for i. Once this has been chosen, vertex 2, being adjacent to 1, must
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go to one of the two vertices adjacent to i. There are two possibilities.
But once this is decided, then there are no further choices: vertex three
must go to the vertex that is adjacent to the vertex that 2 goes to and
different from the vertex that 0 goes to; and vertex 4 goes to the vertex
adjacent to the one vertex 3 goes to and different from the one vertex
2 goes to. And then vertex 5 goes to the only vertex left that nothing
else goes to. So the total number of possibilities is just 5 × 2 = 10, and
these must correspond to the 10 symmetries we described above.
This group is not abelian. The anticlockwise rotation through θ can be
represented by the permutation (1, 2, 3, 4, 5), and the reflection in the
axis if symmetry through vertex 1 can be represented by the permutation
(2, 5)(3, 4). Since

(1, 2, 3, 4, 5)(2, 5)(3, 4) = (1, 5)(2, 4)
6= (1, 2)(3, 5) = (2, 5)(3, 4)(1, 2, 3, 4, 5)

we see that there are elements in the group that do not commute with
one another.

(iii) The group of symmetries of a regular 7-sided polygon has order 14:
seven rotations, representable by the powers of (1, 2, 3, 4, 5, 6, 7), and
seven reflections, each of which fix one vertex and swap the other three
in pairs. One of there reflections corresponds to (2, 7)(3, 6)(4, 5). It is
easy to check that this does not commute with (1, 2, 3, 4, 5, 6, 7); so the
group is not abelian.

3. The set of all real numbers is a group under addition. Is this group cyclic?

Solution.

It is not cyclic. If it were cyclic, it would have to be generated by some
element x. Then the multiples of x would have make up the whole group:

R = { . . . ,−x − x − x,−x − x,−x, 0, x, x + x, x + x + x, . . . }.

It is clear that there is no such x. Certainly x would have to be nonzero—but
then the real number x/2 is not a multiple of x.

4. Let H, K be subgroups of a group. Show that the intersection H ∩K satisfies
(SG1)–(SG3), and deduce that H ∩ K is a subgroup too.
(In words: the intersection of two subgroups of a group is always a subgroup.)

Solution.

Let x, y ∈ H ∩ K be arbitrary. Then x, y ∈ H, and since H is a subgroup,
and therefore closed under multiplication, it follows that xy ∈ H. But we also
have x, y ∈ K, and K is also a subgroup; so xy ∈ K by the same reasoning.
So xy ∈ H ∩ K (since it is in both H and K. But x and y were arbitrary;
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so we have shown that the product of any pair of elements of H ∩ K lies in
H ∩ K. That is, H ∩ K satisfies (SG1).
Since H is a subgroup it satisfies (SG2): e ∈ H (where e is the identity
element of G. Since K is a subgroup, e ∈ K also. So e ∈ H ∩K. Thus H ∩K
satisfies (SG2).
Let x ∈ H ∩ K be arbitrary. Then x ∈ H, and since H satisfies (SG3) we
must have x−1 ∈ H. Similarly, x ∈ K, and hence x−1 ∈ K. So x−1 ∈ H ∩K,
since it is in both H and K. This holds for all x ∈ H ∩ K; so (SG3) holds.
Since H ∩ K satisfies (SG1), (SG2) and (SG3), by definition it is a subgroup
of G.

5. Let G be a group of permutations of the set {1, 2, . . . , n}, and let H be the
set of all elements σ ∈ G that take 1 to 1. That is, H = {σ ∈ G | 1σ = 1 }.
(i) By checking (SG1), (SG2) and (SG3), show that H is a subgroup of G.
(ii) Suppose that τ ∈ G satisfies 1τ = 2.

(a) Show that every element ρ in the coset Hτ satisfies 1ρ = 2.
(b) Show that if ρ is any element of G such that 1ρ = 2 then ρ ∈ Hτ .

(Hint: ρ = (ρτ−1)τ ; show that ρτ−1 ∈ H.)

Solution.

(i) The identity permutation, id, satisfies iid = i for all i ∈ {1, 2, . . . , n}
(by definition). In particular, 1id = 1. So id ∈ {σ ∈ G | 1σ = 1 } = H.
Hence H satisfies (SG2).
Let σ, τ ∈ H. Then 1σ = 1 and 1τ = 1. But by the definition of
permutation multiplication, 1στ = (1σ)τ . So

1στ = (1σ)τ = 1τ = 1,

and so στ ∈ H. This holds whenever σ, τ ∈ H; so H is closed under
multiplication—that is, it satisfies (SG1).
Let σ ∈ H. Then 1 = 1σ, and so

1σ−1
= (1σ)σ−1

= 1σσ−1
= 1id = 1.

So σ−1 ∈ H, and this holds whenever σ ∈ H. So H satisfies (SG3) also.
So H is a subgroup.

(ii) Let ρ ∈ Hτ . Then ρ = στ for some σ ∈ H. Since σ ∈ H, we have
1σ = 1, and it follows that

1ρ = 1στ = (1σ)τ = 1τ = 2.

Since ρ was an arbitrary element of Hτ , we have shown that 1ρ = 2 for
all ρ ∈ Hτ .
Let ρ ∈ G satisfy 1ρ = 2. Then

1ρτ−1
= (1ρ)τ−1

= 2τ−1
= (1τ )τ−1

= 1ττ−1
= 1id = 1.

So ρτ−1 ∈ H, and so ρτ−1τ ∈ Hτ . That is, ρ ∈ Hτ , as required.


