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1. Define G := Sym(9), and choose any permutations x and y that move
only one number in common. For example x := G!(1,4,5,6) and y
:= G!(5,7,8,9) would do.

(i) Use MAGMA to compute the permutation x−1y−1xy. (You may
either type this as it stands or use the MAGMA abbreviation (x,y)
for the element x^(-1)*y^(-1)*x*y.)

(ii) Repeat this for several other choices of x and y. What do you
observe about the result? Try calculating some of the products
by hand to see if you can find a reason for what you observe.

Solution.

> G:=Sym(9);
> x:=G!(1,2,3)(5,7);
> y:=G!(4,5,8,9);
> (x,y);
(5, 8, 7)
> z:=G!(3,4,6)(8,9);
> (x,z);
(1, 3, 4)

> (z,x);
(1, 4, 3)
> w:=G!(5,8,1,7,2);
> (z,w);
(1, 9, 8)
> (w,z);
(1, 8, 9)

The result is always a 3-cycle. Let i be the number that is moved by
both x and y, and let j = ix

−1
and k = ix. Thus j and k are the

numbers that appear on either side of i in the expression for x. For
example, if x = (1, 4, 5, 6) and y = (5, 7, 8, 9) then j = 4, i = 5 and
k = 6. Similarly, let l = iy

−1
and m = iy. In our example we would

have l = 9 and m = 7. It turns out that x−1y−1xy is actually the
3-cycle (i,m, k).

As a first step to seeing this, observe that as i is the only number that
both x and y move, y fixes j and k (since since x does not fix these two)
and x fixes l and m (since y does not). Now consider what x−1y−1xy
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does to i. Starting from i, apply successively x−1, y−1, x and y:

i
x−1

−→ j
y−1

−→ j
x−→ i

y−→ m.

Now consider what x−1y−1xy does to m:

m
x−1

−→ m
y−1

−→ i
x−→ k

y−→ k.

Finally, consider what x−1y−1xy does to k:

k
x−1

−→ i
y−1

−→ l
x−→ l

y−→ i.

So (i,m, k) is one of the cycles appearing in x−1y−1xy. It remains to
show that x−1y−1xy fixes everything else.
Choose any number n that is not one of i, m or k. If x and y both
fix n then it is clear that x−1y−1xy also fixes n. Now suppose that x
moves n, and put p = nx−1

. Since n 6= k, we know that p 6= kx−1
= i.

So neither p nor n is equal to i, and since x moves both p and n it
follows that y does not move either p or n. So, on applying x−1y−1xy,
we find that

n
x−1

−→ p
y−1

−→ p
x−→ n

y−→ n.

That is, n is fixed by x−1y−1xy. Finally, suppose that y moves n, and
put p = ny−1

. Since n 6= m, we know that p 6= my−1
= i. So neither p

nor n is equal to i, and since y moves both p and n it follows that x
does not move either p or n. So, on applying x−1y−1xy, we find that

n
x−1

−→ n
y−1

−→ p
x−→ p

y−→ n.

So n is fixed by x−1y−1xy in this case too, and therefore i, m and k
are the only things moved by x−1y−1xy.

2. Use the following commands to set up subgroups H, K and L of Alt(5).
G := Alt(5);
H := Stabilizer(G,3);
K := Stabilizer(G,4);
L := Stabilizer(G,{3,4});

(i) Find the subgroup M which is the intersection of H and K. Is
M a subgroup of L? (Use the MAGMA command meet to get the
intersection.)
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(ii) Is M equal to L? If not, explain why they differ, and how they
are related.

Solution.

> G := Alt(5);
> H := Stabilizer(G,3);
> K := Stabilizer(G,4);
> L := Stabilizer(G,{3,4});
> L;
Permutation group L acting on a set of cardinality 5
Order = 6 = 2 * 3
(1, 2)(3, 4)
(2, 5)(3, 4)
> M := H meet K;
> print M subset L;
true

This shows that M is a subgroup of L.

> Index(L,M);
2

This shows that M has just two cosets in L. The number of elements
in M is exactly half the number in L. The elements of L that are not
in M interchange 3 and 4, rather than fixing them.

Of course, MAGMA can also tell us the order of M and elements that
generate M .

> M;
Permutation group M acting on a set of cardinality 5
Order = 3
(1, 5, 2)

3. (i) Find a set of 3-cycles that generate the alternating group Alt(5).
To do this you can set A := Alt(5) and then check various sub-
groups of the form
sub< A | (1,2,3), . . . >
Find a generating set which is as small as possible.

(ii) Repeat Part (i) for Alt(6).
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Solution.

> A:=Alt(5);
> #A;
60
> x:=A!(1,2,3);
> y:=A!(1,2,4);
> z:=A!(1,2,5);
> u:=A!(1,3,4);
> v:=A!(1,3,5);
> w:=A!(1,4,5);
> #sub<A|x,y,z,u,v,w>;
60

> #sub<A|x,y>;
12
> #sub<A|x,z>;
12
> #sub<A|x,u>;
12
> #sub<A|x,v>;
12
> #sub<A|x,w>;
60

Why do x and w generate Alt(5) while x and y do not? The point
is that x and y both fix 5, and so the subgroup generated by x and
y is contained in the stabilizer of 5 (which is a subgroup of order 12,
isomorphic to Alt(4)). Similarly, x and z both fix 4, and hence cannot
generate Alt(5). Similar observations hold for the pairs x, u and x, v.
But there is no number that is fixed by both x and w.

In view of the above remarks, if we want a set of 3-cycles that generates
Alt(6), we had better make sure that between them they move all the
numbers 1, 2, 3, 4, 5 and 6. So let us try {(1, 2, 3), (4, 5, 6)}:
> A:=Alt(6);
> #A;
360
> #sub<A|A!(1,2,3),A!(4,5,6)>;
9

That failed. It failed because (1, 2, 3) and (4, 5, 6) both in the setwise
stabilizer of {1, 2, 3} (as well as the setwise stabilizer of {4, 5, 6}). So
we will need at least three 3-cycles to generate Alt(6):

> #sub<A|A!(1,2,3),A!(4,5,6),A!(1,2,4)>;
360

4. (i) Let G be the symmetric group Sym(5) and use MAGMA to con-
struct the following subsets
K1:= {G | (1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(4,5)};
D := { x*G!(1,3,4) : x in Stabilizer(G,1) };
K2:= Set(G) diff {x*y : x,y in D};
K3:= K1 join K2;
K4:= { G!(1,2,3)*x : x in Stabilizer(G,1) };
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(ii) Find the number of elements in each of K1, K2, K3 and K4.

(iii) Which of the these sets is a right coset of a subgroup of G? If it
is a right coset, what is the subgroup?

(iv) The set K4 is a left coset of H := Stabilizer(G,1). In Part (iii)
you will have discovered that it is also a right coset of some
subgroup. Is it always true that every left coset of a subgroup
H is also a right coset of some subgroup? Must the subgroups
concerned always be equal?

Solution.

> G := Sym(5);
> #G;
120
> K1 := {G | (1,2),(1,3),(2,3),(2,4),(2,5),(3,5),(4,5)};
> D := { x*G!(1,3,4) : x in Stabilizer(G,1) };
> K2 := Set(G) diff {x*y : x,y in D};
> K3 := K1 join K2;
> K4 := { G!(1,2,3)*x : x in Stabilizer(G,1) };
> #K1, #K2, #K3, #K4;
7 24 30 24

The order of a subgroup of G has to be a divisor of the order of G
(Lagrange’s Theorem), and the number of elements in any coset of a
subgroup has to be the same as the order of the subgroup itself. Since
7 is not a divisor of 120, K1 is certainly not a coset of any subgroup.

If H is a subgroup of G and x any element of G then the right coset
of H containing x is the set Hx = {hx | h ∈ H }. (It does contain
x, since the identity element is in H.) Recall that distinct cosets have
no elements in common. Now if y is any element of Hx then y is in
both Hy and Hx, and so it follows that Hy = Hx. So if a subset
K of G is a right coset of some subgroup H, then we can choose any
element y ∈ K and it will be true that K = Hy. And if K = Hy then
H = Ky−1 = { kx−1 | k ∈ K }.
The MAGMA startup file for this course defines a function isClosed
that can be used to test whether or not a set Ky−1 is closed under
multiplication. If it is closed under multiplication then it is a subgroup
of G, otherwise it is not. (See Exercise 5 of Tutorial 10.) Or you can
look at the subgroup of G generated by the set Ky−1: this will be
equal to Ky−1 if Ky−1 is a subgroup of G, otherwise it will be bigger
than Ky−1.
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> x:=Random(K2);
> x;
(1, 3, 4, 5)
> H:={k*x^(-1): k in K2};
> isClosed(H);
true

So K2 is a right coset.

> y:=Random(K3);
> y;
(1, 3)
> L:={k*y^(-1): k in K3};
> M:=sub<G|L>;
> #M;
120
> z:=Random(K4);
> z;
(1, 4, 2, 3)
> N:={k*z^(-1): k in K4};
> P:=sub<G|M>;
> #P;
24
> Set(P) eq M;
true

So K3 is not a right coset, while K4 is a right coset.
Let Q be the stabilizer of 1. By definition, K4 is the left coset (1, 2, 3)Q.
According to MAGMA’s calculations above, K4 is a right coset of the
subgroup P.

> Q:=Stabilizer(G,1);
> P eq Q;
false

So it is possible for a set to simultaneously be a left coset of one
subgroup and a right coset of another.
We have seen that if y is any element of the set K, and if K is a right
coset of a subgroup H, then K = Hy. If K is also a left coset of a
subgroup L then we must also have K = yL. So we have yL = Hy,
from which it follows that L = y−1Hy. It is in fact true that if H is
a subgroup of G and y any element of G then y−1Hy is a subgroup
of G. It may or may not equal H.


