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Deforming continuous maps to
holomorphic maps

Let X and Y be complex manifolds. Can every continuous map
X → Y be deformed to a holomorphic map?

• C∗ → D∗: every holomorphic map is constant (Liouville), so
the only winding number realised by holomorphic maps is 0.

• D∗ → D∗: holomorphic maps only realise nonnegative winding
numbers.

• C \ {1, 12 ,
1
3 , . . . , 0} → D∗: there are uncountably many

homotopy classes of continuous maps, but only countably many
classes of holomorphic maps.

In all three examples, if the target D∗ is replaced by C∗, then every
continuous map can be deformed to a holomorphic map.
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Gromov’s theorem

Theorem. If S is a Stein manifold and X is an Oka manifold, then
every continuous map S → X can be deformed to a holomorphic
map.

A Stein manifold has many holomorphic maps into C.
More precisely: A closed complex submanifold of Cn for some n.
There are many nontrivially equivalent characterisations.

Every domain in C and every convex domain in Cn is Stein.

An Oka manifold X has many holomorphic maps from C.
A little more precisely: The Runge approximation theorem holds
for holomorphic maps Cn → X .
There are even more nontrivially equivalent characterisations!

All complex Lie groups and their homogeneous spaces are Oka.
C∗ is Oka but D∗ is not.
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The problem

Every continuous map f from a Stein manifold S to an Oka
manifold X can be deformed to a holomorphic map.

Can it be done for all f at once, in a way that depends continuously
on f and leaves f fixed if it is holomorphic to begin with?

In other words, is O(S ,X ) a deformation retract of C (S ,X )?

Parametrised versions of Gromov’s theorem are known for ‘small’
parameter spaces: Euclidean compacts, e.g. finite polyhedra.
Hence also for CW complexes (FL 2004).

But C and O are CW complexes only in trivial cases. They are
metrisable, but a metrisable CW complex is locally compact.

Using homotopy theory and infinite-dimensional topology, we can
solve the problem for reasonable S and arbitrary X .
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Reformulate the problem

By basic algebraic topology, the following are equivalent.

(i) O(S ,X ) is a deformation retract of C (S ,X ).

(ii) The inclusion ι : O(S ,X ) ↪→ C (S ,X ) is a homotopy
equivalence and has the homotopy extension property.

That is, ι is an acyclic cofibration in the h-structure on Top.

The h-structure (h for Hurewicz) is one of the two classical
frameworks for standard homotopy theory. The other is the
q-structure (q for Quillen).

A parametrised version of Gromov’s theorem for finite polyhedra
implies that ι is a weak homotopy equivalence.
How can we bridge the gap?
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ANRs and the mixed structure on Top

Two main topological ingredients:

The brand new m-structure (m for mixed), due to Cole (2006):
a third framework for standard homotopy theory.

The theory of ANRs (absolute neighbourhood retracts for metric
spaces).

To cut a long story short:

Theorem (FL). Suppose C (S ,X ) is ANR. Then O(S ,X ) is a
deformation retract of C (S ,X ) if and only if O(S ,X ) is ANR.

Theorem (Milnor 1959, Smrekar-Yamashita 2009). C (S ,X ) is
ANR if S is finitely dominated.

We need a good sufficient condition for O(S ,X ) to be ANR.
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Absolute neighbourhood retracts

A metrisable space A is ANR if whenever A is embedded as a
closed subspace of a metric space B, some neighbourhood of A in
B retracts onto A.

There are several other characterisations, including a
‘combinatorial’ one (Dugundji-Lefschetz) that we use.

ANRs have many nice properties. Being ANR is a local property.
Every ANR is locally contractible (and conversely for
finite-dimensional spaces).

A CW complex is ANR if and only if it is locally finite.
ANRs and CW complexes have the same homotopy types.

A metrisable space is ANR if and only if every open subset has the
homotopy type of a CW complex (Cauty 1994).
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The main result

Theorem. Let X be an Oka manifold and let S be a Stein
manifold with a strictly plurisubharmonic Morse exhaustion with
finitely many critical points, e.g. an affine algebraic manifold.

Then O(S ,X ) is a deformation retract of C (S ,X ).

The hypothesis on S is not necessary, but I do not know whether it
can be omitted. For example:

• For arbitrary S , O(S ,Cn) is a deformation retract of C (S ,Cn).

• O(C \ N,C∗) is a deformation retract of C (C \ N,C∗).

Still, C and O are not ANR: they are not semilocally contractible,
so they do not even have the homotopy type of an ANR (or of a
CW complex).

Paper on the arXiv and on my webpage.
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