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Given an n-tuple of complex numbers A = (\y,...,\,), the
corresponding irreducible highest weight representation L(\) of

gl, is generated by a nonzero vector £ € L(\) such that

E;j(=0 for 1<i<j<n, and

E,’,‘f:)\,‘f for 1<i<n.

Any element z € Z(gl,,) acts in L(\) by multiplying each vector

by a scalar x(z).

When regarded as a function of the highest weight, x(z) is a
symmetric polynomial in the variables /4, ..., ¢,, where

fi:)\,'—f—l’l—l'.
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The Harish-Chandra isomorphism is the map
X : Z(gl,) — C[ly, ..., 6,)%",

where C[(y,...,£,]®" denotes the algebra of symmetric

polynomials in ¢1,.. ., 4,.

[Okounkov 1996, Okounkov and Olshanski 1998]:
The quantum immanants S, form a basis of Z(gl,) as . runs

over Young diagrams with at most n rows. Moreover,
X Sp s,

the s7, are the shifted (factorial) Schur polynomials.
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In the case of column-diagrams 1, we recover

the Capelli determinant [1890]:

u+n—14+Eq E» Eq,
E> u+n—2+E» ... E,
C(u) = cdet
i E,. M—I—E,m_
:un‘i_C]Mnil—i-"‘—i—Cn
with

X:Cu)— (u+Ly)...(u+4,).

The coefficients Cy, ..., C, are free generators of Z(gl,,).
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Combine the generators Ej; into the matrix

Eyn ... Ey,

Eyq ... Em

The traces tr E™ are Casimir elements known as

the Gelfand invariants [1950].

The Harish-Chandra images x(tr E™) were first calculated by

[Perelomov and Popov 1966]:

— b+ 1) (b — b+ 1)
E™) .
x(ir Zek el—ek A=t
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A short proof is based on the formula

o0
(=)™ E™  Cu+1)
1 =
T

generalizing both the Newton formula and Liouville formula.

Under the Harish-Chandra isomorphism,

Clu+1)  (ut+b+1)...(u+l,+1)
XTCw) T bt by
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Reshetikhin—Takhtajan—Faddeev presentation

The algebra U,(gl,) is generated by entries of the matrices

11 0]
L 0 Ly ... L
0 0 ... Lf
and ) i
I; 0 ... 0
Ly Iy 0
I~ — 21 22
_ln‘1 Ly ... ln;_
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Defining relations:

__l’__ +__ .
Li i =1L =1, l<i<n,

b e e S o e 47— _ r—7+
RLEL¥ = [*I*R,  RL{L; = L;L{R,

where

R = Zq5,-,- ci®ej+(q—q ") Zeij @ eji,
i,j i<j

with subscripts of L* indicating the copies of End C” as in

Lf =) e;®1®1;7 € EndC" ® EndC" @ U,(gl,),

i
Ly =Y 1®e;®Il7 € EndC"®EndC" ® U,(gl,).
ij
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Reflection equation algebra

Let Ug(gl,,) be the subalgebra of U,(gl,) generated by the

entries of the matrix L = LT (L7)~!.

Equivalently, Ug(gl,) can be regarded as the algebra generated
by the entries of the matrix L = [/;;] subject to

the reflection equation
RL,RL, = LiRLR, R = PR,

where

P = E eji X ejj.
i7j
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Quantum Gelfand invariants

The quantum Gelfand invariants are defined by
try " = tr DL"",
with
D =diag[l,q %,...,qg "]
The elements tr, L™ are central in U,(gl,,) [RTF 1989].

They generate the center Z;(gl,) of Ug(gl,).
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Harish-Chandra isomorphism

The representation L, () of Uy (gl,) with A = (A1,...,\,) is

generated by a nonzero vector ¢ such that
l; €=0 for i>j,
IFe=qgY¢ for i=1,...,n
Any element z € Z,(gl,,) acts in L,(\) as a scalar x(z).

Set ¢; = \; — i + 1 to have the Harish-Chandra isomorphism

X Zg(gh,) — Clg™", ..., ¢*" %",

[Joseph and Letzter 1992, Rosso 1990, Tanisaki 1990].
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Theorem.
We have

X:q" 1tqu’"

where

Z 2Kkm

— 0+ ] .[fk—fn—{—l]q
Ek—ﬁl] N [
¢ —q*

)



Theorem.

We have
n—1 m me 1 !
1 q tr, L k ’
X q Z gk_m ...[&—En]q
where
k —k
q —4q
k
Mo =",

The Perelomov—Popov formulas follow from the theorem by

taking the limit ¢ — 1.
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The g-immanants

The Hecke algebra H,, is generated by elements T, ...

subject to the relations

(T —q)(Ti+q ") =0,
TiTi Ty = Tip1 TiTi4q,

T,T; = T;T; for |i—j| > 1.

The Jucys—Murphy elements are defined by

=T ... TiTy... Ty, k=1,....m.

[Cherednik 1987], [Dipper and James 1987].



The Hecke algebra H,, is semisimple,

Hw = P Maty, (C),

pkEm

where f,, is the number of standard tableaux of shape .



The Hecke algebra H,, is semisimple,

Hw = P Maty, (C),

pkEm

where f,, is the number of standard tableaux of shape .

The diagonal matrix units ¢;, = ¢;,,, € Matz, (C) with sh(if) =

are primitive idempotents of #,,.



The Hecke algebra H,, is semisimple,

Hw = P Maty, (C),

pkEm

where f,, is the number of standard tableaux of shape .

The diagonal matrix units ¢;, = ¢;,,, € Matz, (C) with sh(if) =

are primitive idempotents of #,,.

They can be expressed explicitly in terms of the generators T;

or the Jucys—Murphy elements yy.
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Examples.

If U is the tableau

then

If / is the tableau . then

=g Ow—q?)

€, — .
U@ —q?) .. (¢ —q2)
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The Hecke algebra #,, acts on (C")®™ by
TkHRkk—&-h k=1,...,m—1,

where

Rkk—H €EndC"® ... EndC"

m

and

R=PR= Zqéffeﬁ(@eij%— (q—q_l)ze]j®eii-
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Definition. Given any standard tableau ¢/ of shape u, the

associated g-immanant polynomial is

Su(2) =ty (LT +2g 2 OLT) (L + 2477 L,)

x (L)' (L)) Eu,

where &, is the image of ¢, while ¢x(U) = j — i is the content of

the box o = (i, /) occupied by k. It only depends on .
The expression under the trace belongs to

EndC"® ... ® EndC" ® Uy(gl,).

m
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Equivalent definition.

The g-immanant polynomial is given by
where L = LT (L)~
Given a matrix X, we set X; = X; and
5 5 5 H5—1
Xe =R RLXR; R, k>

Note that in the specialization ¢ = 1 we have R = P

so that X3 = X;.

2.

20
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Theorem.

» All coefficients of S, (z) belong to the center of U,(gl,).

» The eigenvalue of S, (z) in the module L,(\) coincides with

the factorial Schur polynomial

su(q”u... 20, I2) = Z H ( ZKT(Q)_i_Zq—ZT(a)—Zc(a)-f—Z).

sh(T)=u acp

» For any fixed z € C, the elements S ,(z) form a basis of the

center of U (gl,).

21
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Two particular cases

20
.

> 5,(0) =, )

(1) Ly... L&y sulq .y q

coincides with the Drinfeld—Reshetikhin element.
[Drinfeld 1989, Reshetikhin 1989].

> Take z = (¢ — ¢~')~! and define the g-immanant by

SM—S“<q_1q_l).

The limit value of S, as ¢ — 1 coincides with the quantum

immanant S, for gl, [Okounkov 1996].

22
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Quantum Sugawara operators

The quantum affine algebra Uq(gln) is generated by elements

l;}'[—r], li;[r] with 1 <i,j<n, r=0,1,...,

and the invertible central element ¢¢, subject to the defining

relations
+ ] _
L [0] L 0] =0 for 1<i<j<n,
L [0] 2 [0] = £ [0] 1 [0] = 1 for i=1,...,n,
and

23
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We consider the matrices L* (u) = [ ;7 (u)] with
)= G-, L) =Y
r=0 r=0

The R-matrix R(x) is defined by

_ fW
Cg-q'x

R(x) (R + xRy, |

qu*‘)’
where f(x) € 1 + xC|[[x]] is determined by

(1 —xg*) (1 —xq™?)
(1 —x) (1 —xg°")

f(xg™) =f(x)
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We consider the matrices L*(u) = [/ ()] with

) =) th=ru’, L) =) L [ru".
r=0 r=0

The R-matrix R(x) is defined by

_ fW
Cg-q'x

R(x) (R + xRy, |

qu*I)’
where f(x) € 1 + xC][[x]] is determined by

—x 2 —x 2n—2
f(xq2n) :f(x) (1 q )(1 q )

(1 —x) (1 —xq>")
[Reshetikhin and Semenov-Tian-Shansky 1990],
[Frenkel and Reshetikhin 1992].

24



Denote by Uq@n)cri the quantum affine algebra

at the critical level ¢ = —n.
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Denote by Uq@n)m the quantum affine algebra

at the critical level ¢ = —n.
Its completion ﬁq(gtn)m is defined as the inverse limit
INJq(gln)cri = ljian(g[n)cri/Jpa p>0,

where J), is the left ideal of Uq(gr,,)m generated by all elements

L; [r] with r > p.

25
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Definition. Given a standard pu-tableau U,

introduce the Laurent series S ,(z) in z by

Su(@) =ty Ly (272 @) L LE (zg7 2 )

x L;(Zq—n—ZCm(M))—l N ‘L;(Zq—n—ch(Z/{))—lgz/{7

where the g-trace is taken over all m copies of End C".
It only depends on .

All coefficients of S ,(z) belong to U, (gl )eri.
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Theorem.

All coefficients of the Laurent series S ,(z) are

quantum Sugawara operators:

they belong to the center Z,(gl,) of U,(gl,)cri-

Remarks.

Case p = (1) : [Frappat, Jing, M. and Ragoucy 2016].

A general construction based on the universal R-matrix:

[Ding and Etingof 1994].
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Theorem.

The Harish-Chandra images of the quantum Sugawara
operators are found by
X:Su@ e S T e ea @),
sh(T)=p a€p

summed over semistandard tableaux 7 of shape p with entries

in{1,2,...,n}, where

i (@) Iy (g2 - —n42i—2
xi(z2) =¢* 7 i) l“_(zq " )'"_li—li—l(Z.q n2i=2)
I (zg") .. L (zg " H2=2)

28
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Remarks.

» The Harish-Chandra image of S, (z) coincides with the
g-character of the evaluation module L(u) = &,(C™)®™
over Uq(ﬁln)

[Frenkel and Reshetikhin 1999],
[Frenkel and Mukhin 2002],
[Brundan and Kleshchev 2008].
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Remarks.

» The Harish-Chandra image of S, (z) coincides with the
g-character of the evaluation module L(u) = &,(C™)®™
over Uq(ﬁln)

[Frenkel and Reshetikhin 1999],
[Frenkel and Mukhin 2002],
[Brundan and Kleshchev 2008].

» The theorem yields the eigenvalues of quantum Sugawara
operators on the g-deformed Wakimoto modules over
U, (gl,) at the critical level.
[Awata, Odake and Shiraishi 1994].

29



