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What is this subject about?

In 1679, the German mathematician Gottfried von Leibnitz
stated that:

“We need another kind of analysis which deals directly with
position, as algebra deals with magnitude”

He called this new analysis “analysis situs”; it is now known as
topology.

Gauss: showed that the current induced in a wire by the
magnetic field created by the current in another wire is
proportional to the “winding number” of the 2 wires, i.e. the
number of times they are intertwined. Winding number is a
topological concept.

Knot theory, a branch of topology, was created by 4 physicists:
Maxwell, Lord Kelvin (William Thomson), Helmholtz, and Peter
Tait in about 1850. They had various motivations, including the
explanation of all physical interactions.

The problem which Lord Kelvin and Tait thought in 1867 would
be straightforward to solve, viz. to give a complete classification
of all knots, remains unsolved, and important, to this day.

Today, “algebra”, is no longer concerned with magnitude in the
sense that Leibnitz used the word. It is concerned with
mathematical structure, i.e., the structure of abstract systems.

In this talk, we’ll see an emerging subject which is an instance
of Leibnitz’s ‘new analysis’-a mixture of geometry and algebra.

Algebra

My aim is: to do algebra with diagrams, just like we do with
numbers, matrices, etc.
To begin, let’s see in a very simple minded, practical, way what
the term “algebra” means

“Algebra” is simply an environment where we may perform
manipulations which have familiar properties;

The ingredients we shall need are firstly, a set A (“an algebra”)
together with a base field F of coefficients (the scalars), which
you may take to be the real or complex numbers.

As usual in mathematics, what the symbols represent doesn’t
matter. The important thing is what you can do with them.



We need to be able to do three things: multiply, add, and
“multiply by a scalar”. The last operation tells us how A and F
interact.

Why? Because in this environment we can use a combination
of arguments, some formal and algebraic, and some coming
from geometric intuition.

EXAMPLE: take A to be the set of points in the plane, R2 and
the base field F = R, i.e. A = {(x , y) | x , y ∈ R}.

Addition and multiplication are defined coordinate-wise:
(x , y) + (x ′, y ′) = (x + x ′, y + y ′) and (x , y).(x ′, y ′) = (xx ′, yy ′).
Scalar multiplication is defined in the usual (obvious) way: for
α ∈ R, α(x , y) = (αx ,αy).

These operations satisfy the usual rules which apply to
operations with numbers, with which you are familiar; for
example, we have the following rule for multiplying linear
combinations:

For a, b, a′, b′ ∈ A and α, β,α′, β′ ∈ R,

(αa + βb)(α′a′ + β′b′) = αα′aa′ +αβ′ab′ + βα′ba′ + ββ′bb′.

Notice that in the example, ab = ba for all a, b ∈ A. But this is
not true in general, and will not be true in most of the algebras
coming up soon. But the equation above is always true. That is
why I have written it in the form above.

Diagrams
We are going to explore several algebras A whose elements
include diagrams (pictures)

We therefore start by looking at some diagrams, and how to
multiply them.

The first type of diagram we shall consider is a “braid”; here is a
picture of a 4-string braid, which we’ll call b1:

1 2 3 4

1 2 3 4

Here is a second 4-string braid, b2:

1 2 3 4

1 2 3 4
We want to do algebra with braids, so we need to see how to
multiply 2 braids, add them, and how to multiply a braid by a
scalar.
First, let’s deal with the most important operation:
multiplication. Note that here we fix the number of strings (in
our illustration, 4).



Multiplying braids

To multiply two n-string braids, we simply concatenate them.

For example, take the 2 braids we have seen, and join them
thus:

1 2 3 4

1 2 3 4

1 2 3 4

Then delete the intermediate nodes, to obtain a new braid:

1 2 3 4

1 2 3 4

The above braid is the product b1b2 of the braids b1 and b2. It’s
easy to see that it is generally false that b1b2 = b2b1.

But the multiplication also clearly satisfies the associative law:
(b1b2)b3 = b1(b2b3).

Elementary braids, equations.

The easiest braid of all is the “trivial braid” e:

1 2 3 4

1 2 3 4

It is obvious that composing any braid with the trivial one leaves
that braid unchanged; i.e. for any braid b, eb = be = b.

The picture below shows the “elementary braid” σ2.

1 2 3 4

1 2 3 4

In general, for n-string braids, we have σ1, . . . ,σn−1.



Arbitrary braids from elementary ones

The picture below shows the braid σ−1
2 .

1 2 3 4

1 2 3 4

Similarly, we have σ−1
i for any i

The next assertion is easy to see, but important.

Proposition

Any braid b can be obtained by composing a sequence of
elementary braids i.e. b = σ±1

i1
σ±1

i2
. . .σ±1

ip

Relations among the elementary braids

We shall quickly see that the representation of a braid as a
composition of a sequence of elementary ones is far from
unique.

But remarkably, we’ll have precise (but not complete) control
over this non-uniqueness.
Let’s start by composing σ2 with σ−1

2 :
1 2 3 4

1 2 3 4

As you can see by pulling the second string across, over the
third, σ2σ

−1
2 = e, and similarly σ−1

2 σ2 = e.

These are the first examples of equations in our algebra.

Here is another: σ1σ3 = σ3σ1.

This is obvious, because the strings ‘moved’ by σ1 and σ3 have
nothing to do with each other.

In general, σiσj = σjσi if |i − j | ≥ 2.

The classical braid relations

Let us compare σ1σ2σ1 with σ2σ1σ2:

σ1σ2σ1 σ2σ1σ2

They are equal! That is, σ1σ2σ1 = σ2σ1σ2.



We’ve now seen the two fundamental relations which the
elementary braids σi satisfy, viz:

σiσj = σjσi if |i − j | ≥ 2,

and
σiσi+1σi = σi+1σiσi+1 for all i .

Of course we also have σiσ
−1
i = σ−1

i σi = e.

The relations are easy to prove, but the theorem I shall now
state is not:

Artin’s theorem

Theorem
Given any representation of a braid as a product of elementary
braids and their inverses, b = σ±1

i1
. . .σ±1

ip , any other such
representation of b can be obtained from the given one by a
sequence of formal manipulations, using only the two given
fundamental relations.

Example: σ−1
2 σ4σ1σ2σ

−1
4 σ2

1 = σ1σ2σ1.

Another way of stating this:the relations we have seen are
essentially “all relations” among braids.

Artin first proved this in 1926, then again in 1947 and 1956; all
proofs require ideas from several branches of mathematics.

Addition and scalar multiplication
So far, we have seen how to multiply braids. But I promised you
3 operations; so what about addition and scalar multiplication?

Our algebra A will actually have elements which are (formal)
linear combinations of braids: a = α1b1 +α2b2 + · · ·+αpbp,

where the αi ∈ F are scalars, and the bi ∈ Bn are all n-string
braids.

The definition of addition and scalar multiplication is now
obvious (although you may feel cheated).

But the definition of multiplication now must be extended to
linear combinations. It can only be done in one way if we are to
satisfy the axioms discussed earlier:
(∑i αibi)(∑j α

′
j b
′
j ) = ∑i ,j αiα

′
j bib′j .

An application: from braids to links and knots
Why do this? There are many applications; here is one which
leads to the celebrated “Jones invariant” of knots.
Any braid can be made into a link–i.e. an embedding of a finite
set of circles in R3, which are possibly linked and/or knotted. If
there is just one circle, we call the link a knot.
Start with a braid: (we’ll take b1 from earlier) Then ‘close’ it by
joining the corresponding top and bottom nodes:

1 2 3 4

1 2 3 4



The first example above gives just 3 unlinked circles– not very
interesting; let’s try another example:

1 2 3 4

1 2 3 4

This yields two circles, which are unknotted, but linked.

However, if we take b1b2, we get quite a complicated knot:

1 2 3 4

1 2 3 4

Here is another example, which may be familiar:

Start with σ3
1 ∈ B2, and close it:

This is the common trefoil knot.

Alexander’s Theorem

The main point of this “closing of braids” construction is:

Theorem
Any (oriented) link can be obtained by closing an n-string braid,
for some n.

If B denotes the set of all n-string braids, for n = 1, 2, 3, . . . ,,
and L denotes the set of all links, we therefore have a
surjective map B → L

But the same link can come from many different braids!



For example, an unknotted circle comes from both the trivial
1-string braid, and from the 2-string braid σ1:

We now attach a polynomial to each link (and therefore to each
knot as a special case) as follows:

B close−−−→
braid

L

σi 7→σi

y yinvariant: L 7→PL(`,m)

A0
φ=µ.τ−−−→ C[`±1, m±1],

To define the invariant polynomial PL:

I start with a link L, take any braid b whose closure is L
I regard b as an element of the algebra A0 obtained from

the braid algebra A by adding relations.
I evaluate the “trace function” τ at b; τ arises from the

algebraic structure.
I multiply τ(b) by µ(b) to ensure that the result does not

depend on the choice of b

Note that if A(n) is the algebra of n-string braids, then
A(1) ⊂ A(2) ⊂ A(3) ⊂ . . . . I have skirted around the possible
dependence on the number of strings n.

The algebra A0 is obtained by imposing some extra relations
on A.

The extra relations are of the form σ2
i + xσi + y = 0 for suitable

non-zero elements x , y of F ; this says merely that the σi satisfy
a quadratic equation.

This quadratic relation makes A0 into a “Hecke algebra”, which
is a famous class of algebras, about which much is known.

Geometrically, this quadratic relation means that the link
invariant PL = PL(`, m) satisfies a “skein relation”; that is:

If L+, L− and L0 are links which are the same everywhere
except at one crossing, where they look like:

L+

..

..

..

..
L−

..

..

..

..
L0

..

..

..

..

The invariants of the 3 links are then related by:

`PL+
+ `−1PL− + mPL0 = 0.

This “skein relation” provides an easy way of calculation for PL
by unravelling the knot, crossing by crossing.

The skein relation is equivalent to the the quadratic relation we
have seen for the braids σi .



Other diagram algebras

We may impose further relations on the elements of the Hecke
algebra, obtaining a “Temperley-Lieb algebra”, which also has
elements which are diagrams, but are not braids. Here is such
a TL diagram:

1 2 3 4

1 2 3 4

Temperley-Lieb algebras were invented by physicists to study
phase changes in matter.

There is a calculus of “planar diagrams”, similar to that which
we have seen for braids.

1 2 3 4

1 2 3 4

1 2 3 4

=δ

1 2 3 4

Where δ ∈ F is a parameter.

There are many other types of diagram algebras; we have
diagrams on cylinders, or other surfaces. There are the
mysterious “Feynman diagrams”, partition diagrams and many
others.

Most of the algebras I have mentioned are “cellular”.

This means they come in families, which are parametrised by
variables which range over some geometric space X ; (above:
p = δ ∈ F ). The structure of the algebra corresponding to a
point p ∈ X mostly varies continuously with p, but sometimes
doesn’t. Thus there are “singular points”.

It is these singular points which are both mathematically and
physically interesting. This is where “modular representation
theory” and phase changes in physics meet; these subjects
have never had any previous contact at all.

From vortices in the ether to modern mathematics

About 150 years ago, a group of celebrated physicists,
including Lord Kelvin and Peter Tait set themselves the
following program:

1. Classify all knots, and order them by complexity.
2. Determine which of them occurs as “vortex knots” in

chemicals.
3. Explain the spectrum of a chemical in terms of knots.
4. Explain physical laws which matter follows in these terms.

This program itself has not gone according to plan; Step 1 is still
not complete, but has led to many very rich mathematical veins.



The “algebra of diagrams” is an emerging subject in
mathematics, which combines ideas from all 3 traditional areas:
geometry, algebra and analysis.

Among the subjects which are impacted by this theory are:

I String theory in physics.
I Classification of ‘manifolds’.
I Theory of quantum groups and Hecke algebras.
I Quantum computing (cf. Michael Freedman at Microsoft)
I Enumerative geometry (counting intersections with

multiplicity).
I Configuration spaces.
I Statistical mechanics.

HAPPY NEW YEAR!

I hope you have seen a glimpse of how ideas from diverse
areas can come together to create something of value, and
which is fun to play with.

I wish you all a bright future of playing with ideas.

HAPPY NEW YEAR!
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