
Sydney University Mathematical Society Problem Competition 2011

This competition is open to undergraduates (including Honours students) at any Australian uni-
versity or tertiary institution. Entrants may use any source of information except other people.
The problems will also be posted on the web pagehttp://www.maths.usyd.edu.au/u/SUMS/.

Entrants may submit solutions to as many problems as they wish. Prizes ($60 book vouchers
from the Co-op Bookshop) will be awarded for the best correctsolution to each of the 10 prob-
lems. Students from the University of Sydney are also eligible for the Norbert Quirk Prizes,
based on the overall quality of their entry (one for each of 1st, 2nd and 3rd years). Extensions
and generalizations of any problem are invited and are takeninto account when assessing solu-
tions. If two or more solutions to a problem are essentially equal, preference may be given to
students in the earlier year of university; otherwise, prizes may be shared. If a problem receives
no correct solutions, its prize-money will be redistributed among the other problems.

Entries must be received byFriday, August 12, 2011. They may be posted to Dr Anthony
Henderson, School of Mathematics and Statistics, The University of Sydney, NSW 2006, or
handed in to Room 805, Carslaw Building. Please mark your entry SUMS Problem Competition
2011, and include your name, university, student number, year of study, and postal address (or
email address for University of Sydney students) for the return of your entry and prizes.

1. Alice and Bess are playing a game with an ordinary six-sided die. Alice’s target numbers are
1, 2, 3, and Bess’ target numbers are4, 5, 6. They take turns in rolling the die, with Alice going
first. If the one whose turn it is rolls a target number which she has not previously rolled, she
gets to roll again; if she rolls a target number which she has previously rolled, or a number which
is not one of her target numbers, her turn ends. The winner is the first player to have rolled all
three of her target numbers (not necessarily all in the one turn). What is the probability that
Alice wins?

2. Determine all pairs of positive integersa, b such that4a + 4b + 1 is an integer square.

3. Letm andn be positive integers withm ≥ n. LetA be then× n matrix with (i, j)-entry equal
to the binomial coefficient
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. Find the determinant ofA.

4. The power series
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converges for allz, to f(z) say. Let
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series expansion of
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about0. Prove thata3n = 0 for all positive integersn.

5. 2011 is a prime number. LetN = 22011 − 1, a 606-digit number which can be shown to be
composite by computer calculations. Using elementary number theory (and maybe a pocket
calculator), prove thatN has no prime factors less than80, 000.
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6. Let n ≥ 3 be an integer. Consider then(n− 1) ordered pairs(i, j), wherei, j ∈ {1, 2, · · · , n}
andi 6= j. Show that there is a way to arrange these pairs around a circle, equally spaced, so
that for any distincti, j, k ∈ {1, 2, · · · , n}, the arc from(i, j) to (j, k) which passes through
(i, k) is less than half the circumference of the circle. For example, the first of the following
pictures forn = 3 has this property; the second does not, because (to name one of its failings)
the arc from(1, 3) to (3, 2) which passes through(1, 2) is equal to half the circumference.
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7. For a positive integern, let bn denote the number of binary strings consisting ofn zeroes andn
ones which have no three consecutive zeroes and no three consecutive ones. Show that

bn =
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where the binomial coefficient
(
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is defined to be zero ifj < 0 or j > k.

8. Let (x1, y1), · · · , (xn, yn) ben distinct points in the plane with0 < xi < 1 and0 < yi < 1 for
all i. LetV be the set of all integer translates of these points, i.e. points of the form(xi+a, yi+b)
for 1 ≤ i ≤ n, a, b ∈ Z. A periodic hexagon tessellation with vertex setV consist of a set of
continuous curves in the plane callededges such that:

• the endpoints of each edge are distinct elements ofV , and edges do not intersect except at
their endpoints,

• every element ofV is the endpoint of exactly three edges,

• every one of the regions between the edges has exactly six edges on its boundary, and

• wheneverC is an edge, every integer translateC + (a, b) for a, b ∈ Z is also an edge.

Show that a periodic hexagon tessellation with vertex setV exists if and only ifn is even.

9. By a word in this problem we mean a (possibly empty) string of lowercase letters in the usual
alphabeta–z. If W1 andW2 are words then we writeW1W2 for the concatenation ofW1 and
W2. We say that there is anelementary transition between two wordsW andW ′ if W has
the formW1W2W3 andW ′ equalsW1W2W2W3 (in other words,W ′ is obtained fromW by
repeating some sub-word), or ifW has the formW1W2W2W3 andW ′ equalsW1W2W3 (in
other words,W ′ is obtained fromW by deleting one copy of a repeated sub-word). We say
that two wordsW andW ′ areequivalent if they are connected by a finite sequence of such
elementary transitions. For example,barbaric is equivalent tobaariric because of the
following sequence of elementary transitions:

barbaric←→ baric←→ baaric←→ baariric

Find the number of equivalence classes of words in which every letter of the alphabet appears.

10. Let A be a finite set. Suppose we have a real-valued functionf on the set of subsets ofA with

the property that
∑

i∈I

f(I \ {i}) = 0 for everyI ⊆ A. Prove thatf(I) = 0 whenever|I| <
|A|
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