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Abstract

This thesis contains a theoretical investigation of several different aspects of second

messenger signalling inside single cells, using mathematical modelling techniques. The

thesis is divided into three parts.

In the first part, a detailed mathematical model is presented governing the dynamics of

subcellular chemical species, starting from the application of external ligand through

to the production of inositol 1,4,5-trisphosphate (IP3) and ultimately to the release of

Ca2+ from internal stores. The model is then used to quantify experimental data of

the purinergic stimulation of 1321N1 human astrocytoma cells (Garrad et al., J. Biol.

Chem. 273 (1998), 29437-29444).

In the second part, a mathematical model is presented for the dynamics of the Green

Fluorescent Protein-Pleckstrin Homology Domain (GFP-PHD) fusion construct. Bound-

ary layer techniques are used to derive a simplified set of equations that describe

changes in cytosolic and membrane GFP-PHD fluorescence. These equations are used

to deduce the spatial and temporal changes of IP3 concentrations inside cells. The

model is also used in conjunction with the complete signal transduction model from

the first part to quantify GFP-PHD fluorescence data of the purinergic stimulation of

Madin-Darby canine kidney epithelial cells (Hirose et al., Science 284 (1999), 1527-

1530).

In the third part of the thesis, the propagation of saltatory calcium waves through

confined intracellular spaces is considered. The existence, stability and speed of these

waves are shown to depend critically on the values of the model parameters. The

results are applied to the case of calcium waves propagating in the subsarcolemmal

regions of atrial myocytes (Kockskämper et al., Biophys. J. 81 (2001), 2590-2605).
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Chapter 1

Introduction

This thesis contains a theoretical investigation of three different but related topics

relating to intracellular second messenger signalling in isolated cells. These topics are

addressed in the three subsequent chapters. In the present chapter, the background

will be given for each topic and the scope of this thesis placed in the broader context

of the study of cell physiology.

1.1 Intracellular signal transduction

The behaviour of a cell can be modified by signals from its external environment in a

number of different ways. Chemical signals can enter a cell by their being passively or

actively transported through the cell membrane, by being endocytosed in vesicles, or

by diffusing through gap junctions. They can also act directly on receptor molecules

in the cell membrane which can in turn trigger a cascade of events inside the cell.

These receptor activating ‘primary’ messenger chemicals fall into three broad functional

groups, (1) those that elicit a specific physiological response, for example an action

potential, muscle contraction or chemotaxis; (2) those that alter gene expression, that

is, change the way protein manufacture is specified by the nucleus; and (3) those that

stimulate the proliferation of cells, that is, change the rate of cell division.

Receptors belong to one of two subtypes, the ionotropic receptors or the metabotropic

receptors. Ionotropic receptors are ligand gated ion channels in the cell membrane, an

example being the NMDA receptor which plays a vital role in the generation of post

synaptic action potentials in neurons. In contrast, metabotropic receptors relay the

primary messenger stimulus by bringing about the generation of secondary signalling

molecules, or ‘second messengers’ inside the cell (Fig. 1.1). The most important second
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messengers are cyclic AMP (cAMP) and calcium (Ca2+), both of which have a diverse

range of targets within cells. cAMP is involved in signalling pathways controlling cell

division and gene expression. Ca2+ plays a vital role in subcellular processes such as

vesicle secretion, membrane excitability and muscle contraction. It can also cause cell

death (apoptosis) in the case where there is an abnormally high mitochondrial Ca2+

concentration (Berridge et al., 1998).

A process common to many cell types by which metabotropic receptor activation re-

leases intracellular Ca2+ is where the receptors activate G-proteins which then acti-

vate the enzyme phospholipase C (PLC). PLC breaks down the membrane lipid phos-

phatidylinositol 4,5-bisphosphate (PIP2) leading to the formation of the intermediate

second messenger, inositol 1,4,5-trisphosphate (IP3) (Berridge, 1993). IP3 diffuses from

the membrane into the cell and acts on receptors located on internal stores of Ca2+, the

endoplasmic reticulum (ER) or sarcoplasmic reticulum (SR) in the case of myocytes

(contractile cells), leading to an increase in Ca2+ concentration in the cell. Release

of Ca2+ from the ER/SR is due to two main receptor types, the IP3 channel and the

ryanodine channel (so called because of its high sensitivity to the plant alkaloid ryan-

odine). The IP3 sensitive channel opens upon binding of both IP3 and Ca2+ and hence

is said to exhibit both IP3 induced Ca2+ release (IICR) and Ca2+ induced Ca2+ release

(CICR). However, the ryanodine channel is insensitive to IP3 and exhibits only CICR.

Despite the important role of metabotropic receptor pathways in the Ca2+ dynamics of

cells, there is at present no complete theoretical model for the complete process leading

from receptor activation through to intracellular Ca2+ release. One of the aims of this

thesis is to address this need and in Chapter 2 a mathematical model is developed

which incorporates realistic modelling for the different parts of the signalling pathway.

Features such as internalization and desensitization of receptors, depletion of PIP2,

activation of PLC by Ca2+, realistic IP3 channel characteristics and buffering of Ca2+

are all included, being factors likely to affect the time course of intracellular Ca2+ and

IP3 concentration upon application of agonist. As discussed in Chapter 2, CICR due

to ryanodine receptors is assumed to be negligible and is not included in the modelling.

Except where otherwise stated, exchange of ions through channels in the cell membrane

is also neglected.

In deriving the model, the various chemical species are assumed to be distributed uni-

formly in the cell membrane and cytosol. The resulting mathematical model is in the

form of a set of non-linear ordinary differential equations (ODEs) containing a number

of undetermined parameters. Values for these parameters are obtained when consider-

ation of the model is given with regard to data of in vitro experiments conducted on
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specific cell systems.

There are many different types of G protein coupled membrane receptors to which such

a model could be applicable. This thesis, however, is concerned with the P2Y2 recep-

tor, a member of the P2 class of receptors (reviewed by Harden et al., 1995), which

binds purinergic ligands such as adenosine triphosphate (ATP) and uridine triphos-

phate (UTP). The P2Y2 receptor is present in a wide variety of different cell types and

the regulation of intracellular Ca2+ in which it plays a role has many purposes. For

example, activation of P2Y2 receptors by UTP in airway epithelial cells increases Ca2+

activated chloride ion secretion through the cell membrane, and may form the basis of

improved therapies for cystic fibrosis (Knowles et al., 1991).

The P2Y2 receptor is present in the membrane of the 1321N1 human astrocytoma cells

(Garrad et al., 1998) to which application of the model is given in Chapter 2, and is

also expressed in Madin-Darby canine kidney (MDCK) epithelial cells (Hirose et al.,

1999), to which the model is applied to in Chapter 3. Where possible, parameter values

were obtained from previously published data. Other parameter values were obtained

by adjusting the parameters so that the theoretical predictions of the model fitted the

experimental results.

Quantifying the relationships between chemical species in the form of a mathematical

model and applying it to real experimental data is important for several reasons. For

example, the model predictions can be compared with experimental results to validate

and refine the theory on which the modelling is based. It can also allow predictions to

be made about unknown quantities in an experiment, such as species concentrations

and values of parameters. Also, the modelling can sometimes uncover interesting rela-

tionships between quantities, such as that between the rate of PIP2 depletion and time

course of Ca2+ and IP3 concentration in cells which is a key finding of this thesis.

In vivo, different ligands may simultaneously act on a cell (see Fig. 1.1, A). For example

both noradrenaline (NA) and ATP are cotransmitters released at the neuromuscular

junction causing contraction of rat tail artery smooth muscle cells (Stjärne and Stjärne,

1995). Also, the same kind of ligand can act on more than one type of receptor, to

liberate intracellular Ca2+ through multiple signalling pathways (Fig. 1.1, B). In the

previous example, NA acts simultaneously on the α1 and α2 adrenergic G-protein

coupled receptors bringing about contraction through IICR. In some cases, the same

type of receptor can work by simultaneously activating different intracellular pathways

(Fig. 1.1, C). For example, during fertilization of sea urchin eggs, internal Ca2+ is mo-

bilized due to the production of the second messengers IP3, adenosine diphosphoribose

(cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP+) (Da Silva and
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Guse, 2000). As discussed in Chapter 2 the P2Y2 receptor can activate distinct path-

ways comprising different G-protein and PLC species, albeit to release the same second

messenger, IP3.

The reasons for multiple signalling pathways for the same primary messenger is be-

lieved to include (a) the need for the safety of having built-in redundancy, (b) the

provision of Ca2+ responses of different amplitude and duration for the fine tuning of

the physiological response; and (c) the need to ensure localized Ca2+ release by spa-

tial localization of molecules constituting the different signalling pathways (Da Silva

and Guse, 2000). Point (b) appears to be the case for the rat tail artery where ATP

and NA mediate a biphasic contractile response with the former contributing a rapid

‘phasic’ response and the latter a slow ‘tonic’ response. Point (c) may be true of the

P2Y2 receptor, which is in some cases localized in patches on the cell membrane (see

Fig. 1.2, also Sromek and Harden, (1998); Fig. 6A). PIP2 has also been shown to

be localized in caveolae, small flask shaped infoldings of the plasma membrane 70-100

nm in diameter, which indicates that IP3 production may be heterogeneous in the cell

membrane (Pike and Casey, 1996). Spatial localization of receptors and PIP2 in non-

overlapping domains would suggest the importance of membrane diffusion of PLC and

G-protein molecules to provide signal coupling across the membrane.

In Chapter 2 discussion is given of how the mathematical model developed in that

chapter could be extended to include the more detailed aspects of signalling pathways

described above.
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Figure 1.1: Schematic diagram of intracellular release of Ca2+ inside a cell mediated by
other second messengers (filled circles) (A) due to the different extracellular primary
messengers (ligands) working through different receptors, (B) due to the same pri-
mary messenger working through different receptors and (C) due to the same primary
messenger and receptor working through different intracellular pathways.

Figure 1.2: Transverse cross-sectional image of a vascular smooth muscle cell from the
rat tail artery showing P2Y2 receptors localized in clusters. The cell was stained using
antibodies to the P2Y2 receptor. The length of the calibration bar is approximately
1.5 µm. Image courtesy of the Neurobiology Laboratory, the University of Sydney.
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1.2 Fluorescent indicators in cell biology

Fluorescent indicators play an important role in the experimental study of cell pro-

cesses. A fluorescent probe molecule introduced into a cell may preferentially bind to

some other molecule inside the cell, or if it is transfected into the cell (written into the

cells genome), may be expressed preferrentally in certain parts of the cell. Using opti-

cal microscopy techniques, the presence and spatial location of intracellular molecules

and organelles can then be visualized. A probe that is proving highly useful for this

procedure is the green fluorescent protein (GFP), a protein occurring naturally in the

jellyfish Aequorea victoria (reviewed in Tsien, 1998). For example, GFP attached to

sarcoplasmic/endoplasmic reticulum Ca2+-ATPase proteins (SERCA) has been used

to visualize the dynamics of SERCA molecules in the endoplasmic reticulum and the

alveolar sacs of Paramecium cells (Hauser et al., 2000). Similar results may come

from studying the tissues of ANDi, a transgenic rhesus monkey created by infecting

unfertilized eggs with the gene for GFP (Chan et al., 2001).

The fluorescence or (photon) absorption properties of some probes change upon binding

with ions such as Ca2+, for a review see Tsien (1989). Some examples of Ca2+ sensitive

probes are fura-2, which exhibits a shift in absorbance spectra to shorter wavelengths

upon binding of Ca2+, and fluo-3 where Ca2+ binding results in an increase in efficiency

of fluorescence. This effect is widely used by experimentalists to image spatial and

temporal changes in Ca2+ concentration within live cells. The probes are introduced

into the cell by micro-injection or by being permeable to the cell membrane. Optical

microscopy techniques can then be used to image the probe. Confocal microscopes are

useful for obtaining plane cross-sectional images of probe distributions in cells.

The chemical properties of the probe can have a significant effect on the dynamics of

intracellular Ca2+. If the concentration of the probe is large relative to the amount of

free Ca2+, significant amounts of Ca2+ maybe bound to the indicator thereby critically

altering the supply of Ca2+ in the cytosol. The binding of Ca2+ to a probe slows the

rate of diffusion of Ca2+ (Wagner and Keizer, 1994) in the same way as endogenous

buffers (hence Ca2+ indicators are frequently referred to as ‘buffers’). Saturation of the

binding of Ca2+ with the probe and the slow rate of binding relative to fast intracel-

lular Ca2+ events, for example Ca2+ sparks, also affects the relation between the Ca2+

concentration and the indicator response. Therefore it is often necessary to include the

presence of the Ca2+ indicators in the modelling as has been done in Chapter 2, see

also Smith et al. (1998) for a study of the effects of Ca2+ buffers on sparks. However,

the concentration of the indicator within a cell is usually not known precisely and esti-

mates or typical values are often used. The inexactness of measuring the concentration
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of the Ca2+ indicator is a problem particularly with probes such as fluo-3 where the

dependence of fluorescence on Ca2+ concentration depends on the concentration of the

indicator.

This thesis makes much use of experimental data where fluorescent probes for Ca2+

have been used. In Chapters 2 and 3 measurements of Ca2+ concentrations expressed

as molar quantities were obtained from experiments that used fura-2. In Chapter 4,

the experimental data of images of Ca2+ sparks used fluo-4.

Until recently there has not been a similar method for imaging changes of IP3 concen-

tration in live cells. There has existed techniques for measuring the relative change of

total IP3 mass with respect to time, but this has required the cell to be destroyed in the

process (for details of such a technique see Challis et al., 1988). However a technique

has recently been developed whereby GFP has been tagged to the pleckstrin homology

domain (PHD) of PLC and the gene for GFP-PHD transfected into the DNA of cells

(Stauffer et al., 1998). The PHD of the GFP-PHD binds to PIP2 in the membranes

of the cells in the absence of IP3, but if there is an increase in IP3 concentration, the

PHD preferentially binds to the IP3 (Lemmon et al., 1995) causing the GFP-PHD to

diffuse into the cell from the membrane. This results in changes in the intensity of

GFP fluorescence in the cell membrane and cytosol (see Fig 1.3) which can then be

used to analyse the spatial and temporal changes in IP3 concentration in intact cells.

The technique can be used simultaneously with Ca2+ indicators to compare changes

in IP3 and Ca2+ concentration, which are linked by IICR and possibly also by Ca2+

activated IP3 production in the cell membrane. In the work of Hirose et al. (1999) there

is evidence of a simultaneous Ca2+-IP3 wave travelling longitudinally through the cell

(see Fig 1.4) which is highly suggestive of both IICR and the catalytic effect of Ca2+

on IP3 production.

There are however some interesting theoretical aspects pertaining to the use of this

method of imaging IP3 concentration. The aim of Chapter 3 is to develop and study a

mathematical model for the intracellular dynamics of the GFP-PHD and to apply it to

experimental data. The model includes the interaction of GFP-PHD with PIP2 in the

cell membrane and diffusion of GFP-PHD in the cytosol. The result is a set of reaction-

diffusion-adsorption equations in terms of the concentrations of IP3, GFP-PHD and

PIP2 in a cell. It is shown that with certain assumptions these equations simplify to a

boundary value problem in terms of only the cytosolic GFP-PHD concentration. The

parameters for this simplified problem can be determined experimentally, although

the need to calibrate the probe for specific experiments may limit its usefulness for

quantitative analysis.
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Solution of the simplified equations for the case of cylindrical and circular cells reveals

the presence of a delay in the diffusing of GFP-PHD between the membrane and

cytosol. Also the modelling reveals that PIP2 depletion causes translocation of GFP-

PHD to the cytosol. This complicates the relation between GFP-PHD fluorescence and

IP3 concentration in cases where there is significant depression of PIP2 levels during

agonist stimulation.

In Chapter 3 the model for the dynamics of the GFP-PHD is also used in conjunction

with the complete cell model given in Chapter 2, to quantify Ca2+ and GFP-PHD

fluorescence data for the purinergic stimulation of MDCK cells with ATP (Hirose et

al., 1999).
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t = 0 t ≈ 1min t ≈ 2min t ≈ 3min t ≈ 4min

Figure 1.3: Sequential images showing the time variations of GFP-PHD fluorescence
in a smooth muscle cell exposed to ATP at t = 0. The reduction of fluorescence
intensity over time on parts of the cell membrane is evidence of the translocation
of GFP-PHD from these areas due to the presence of IP3 or PIP2 depletion. The
retention of membrane GFP-PHD seen at the end regions of the cell could be due to
trapping of GFP-PHD by peripheral SR or preferential trafficking of PIP2 to these
regions. The length of the calibration bar is approximately 1 µm. Images courtesy of
the Neurobiology Laboratory, the University of Sydney.
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Figure 1.4: Images showing the intracellular dynamics of Ca2+ and IP3 in an MDCK
epithelial cell. The time courses of the signals from the regions indicated by the num-
bered boxes are plotted. The presence of a simultaneous Ca2+-IP3 wave is indicated by
the elevation of GFP-PHD fluorescence simultaneously with Ca2+ concentration. This
figure is taken from Fig. 4 of Hirose et al. (1999).
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The use of the GFP-PHD as a probe for IP3 is receiving increasing interest by ex-

perimentalists. It is envisaged that the modelling techniques and results contained in

Chapter 3 will prove useful in future application of the GFP-PHD probe in experi-

ments. Indeed, at the time this thesis was in the final stages of completion, a paper

was published (Xu et al., 2003) detailing an experimental and mathematical modelling

study of bradykinin induced changes in N1E-115 neuroblastoma cells. The study con-

tains an independently devised model for the GFP-PHD dynamics and also includes

a simple mathematical model for phosphoinositide turnover in the membrane of these

cells. The results of that paper show agreement with the time course of PIP2 recovery

after treatment with agonist predicted in Chapter 2 and also that both IP3 generation

and PIP2 depletion cause translocation of GFP-PHD to the cytosol.

1.3 Intracellular Ca2+ waves

The experimental data used in Chapters 2 and 3, namely that of the purinergic stimu-

lation of 1321N1 cells and MDCK cells, exhibits a Ca2+ and IP3 response that increases

over a period of tens of seconds, and decreases over a period of several minutes. Over

these time scales, the concentration of Ca2+ and IP3 can be assumed to be homoge-

neous through the cytosol, assuming that the processes in the model are not spatially

dependent. Under these assumptions there is no need to incorporate diffusion of Ca2+

or IP3 into the model. In some cases however, evidence shows that there is distinc-

tive heterogeneity in the release of intracellular Ca2+. This heterogeneity can take the

form of Ca2+ wave fronts propagating through the cell or spontaneous, highly localized

releases of Ca2+ called ‘sparks’.

Ca2+ waves usually occur when Ca2+ is released from Ca2+ sensitive ion channels

located in the ER/SR. Typically the spatial extent of the wave front is much longer

than the characteristic distance between the release channels. In this limit, Ca2+

release into the cytosol can be assumed to occur from channels distributed continuously

through the ER/SR. The fine structure of the ER/SR, which is believed to be a network

of interconnected tubules, is usually ignored in modelling studies and assumed to be

a continuum. However, there is evidence that the ER/SR can comprise spatially and

functionally distinct parts (Golovina and Blaustein, 1997). In some cells the peripheral

ER/SR, which is located close to the cell membrane, becomes effectively a barrier

between the cell membrane and the bulk of the cell. The dynamics of Ca2+ in the space

between the peripheral ER/SR and the cell membrane, called the ‘subsarcolemmal’

space in the case of myocytes, differs from that in the bulk of the cell. Thus the
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character of the Ca2+ waves in these peripheral regions will be quite different from

those in the central part. For example in the rat megakaryocyte (Thomas et al., 2001)

and Xenopus laevis egg (Fontanilla and Nuccitelli, 1998), Ca2+ waves in the peripheral

parts of the cell are observed to travel with a greater speed than those in the central

part.

In essence, intracellular Ca2+ waves arise from the non-linear relation between Ca2+

concentration and Ca2+ channel current coupled to diffusion of Ca2+ in the cytosol.

However, modelling studies show that wave propagation can also depend on the inter-

play of a variety of factors such as the presence of SERCA and cell membrane pumps,

ER/SR leaks and cytosolic Ca2+ buffering (Jafri and Keizer, 1995). Ca2+ waves are im-

portant physiologically because they allow small, localized increases of cytosolic Ca2+

to trigger global release of Ca2+ through the cell.

Mathematical models of systems exhibiting Ca2+ waves typically comprise sets of cou-

pled reaction-diffusion equations. Although strictly speaking cell systems always have

three space dimensions, the dominant mode of propagation often has fewer dimen-

sions. For example in long thin cells such as myocytes, Ca2+ concentration equilibrates

rapidly in the transverse direction and so wave propagation can be modelled in only

the longitudinal direction. In spherically shaped cells such as Oocytes, fertilization

Ca2+ wavefronts observed in the equatorial plane viewed under a confocal microscope

appear planar, warranting the use of a model with two space dimensions (Wagner et

al., 1998).

The other type of heterogeneity of intracellular release, that of ‘sparks’ of Ca2+, results

from the release of Ca2+ from discrete openings of clusters of ryanodine sensitive chan-

nels located in the ER/SR. Discrete openings of clusters of IP3 sensitive channels can

also occur in some cases, causing localized release of Ca2+ called ‘puffs’ (Parker and

Yao, 1991). Ca2+ sparks can occur spontaneously but their probability also exhibits

dependence on Ca2+ concentration owing to their CICR properties (Györke and Fill,

1993). The spontaneous nature of sparks is evident in whole cell Ca2+ measurements

which take on a spiky, noise-like appearance due to contributions by sparks at different

sites within the cell (see Fig 1.5). Whereas the locations of the sites of sparks may

be anywhere inside a cell, the occurrence of sparks near the cell membrane can be of

special physiological significance. In smooth muscle, sparks near the cell membrane

open large conductivity Ca2+ sensitive potassium (BK) channels which brings about

spontaneous transient outward currents (STOCs). These are thought to provide a neg-

ative feedback mechanism for contraction by hyperpolarizing the cell membrane and

thereby reducing activated Ca2+ entry through voltage gated L-type Ca2+ channels in
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the membrane (Jaggar et al., 2000).

In cardiac cells, Ca2+ sparks play an important role in excitation-contraction (EC)

coupling whereby an action potential induces contraction of the cell. The main means

of electrical coupling between cardiac cells are gap junctions (Severs, 1995) which

connect the cytoplasms of adjacent cells and permit the exchange of small molecules

(< 1 kDa) between them. These allow intercellular waves arising from the sinoatrial

node (the pacemaker of the heart) to propagate through the heart tissue. Thus the

‘primary message’ to bring about contraction in cardiac muscle is communicated via

gap junctions, whereas in smooth muscle tissue the signal is communicated by both

gap junctions and neurotransmitter, which is released from varicosities on the cells and

activates metabotropic and ionotropic receptors. The depolarization of the membrane

of the myocyte which occurs during an action potential triggers Ca2+ influx through

voltage gated L-type channels in the sarcolemma (SL) which in turn triggers Ca2+

sparks. Unlike in smooth muscle, the dominant mode of intracellular Ca2+ release in

cardiac cells is CICR through ryanodine channels.

Ventricular myocytes have infoldings in the SL known as T-tubules, which allows an

action potential to propagate (speed of the order 1×104 µm.(ms)−1) deep inside the

cell. This activates sparks inside the dyadic cleft, which is the space between the

SL at the end of the T-tubule and sarcoplasmic reticulum. T-tubules are thought to

allow rapid release of intracellular Ca2+ and concomitant cell contraction, bypassing

the need for Ca2+ to be released by way of a radially propagating Ca2+ wave which is

far slower (of the order 0.1 µm.(ms)−1) (Brette and Orchard, 2003). Atrial myocytes,

like other cardiac cells such as pacemaker and Purkinje cells, do not possess T-tubules

but appear to have structures homologous to dyadic clefts, where the SR and SL are

in close proximity (see Fig. 1.6) and which are the sites of Ca2+ sparks. Interestingly,

these sparks have been observed to form a regenerative Ca2+ wave (Kockskämper

et al., 2001), where Ca2+ released from a site during a spark diffuses through the

subsarcolemmal space to an adjacent site and triggers a new spark by way of CICR

(see Fig. 1.7).
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Figure 1.5: Time course of global Ca2+ in a tracheal smooth muscle cell revealing a
train of Ca2+ sparks. This figure is taken from Fig. 7 of Pabelick et al. (1999), for the
case of no extracellular Ca2+.

∨ ∨

Figure 1.6: Electron micrograph of a longitudinally cut atrial myocyte. The locations
of two peripheral couplings are marked by arrows. The length of the calibration bar is
200 nm. This figure is taken from Fig. 9 of Kockskämper et al. (2001).
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Figure 1.7: Subsarcolemmal Ca2+ waves observed in an atrial myocyte. (A) schematic
diagram of an atrial myocyte (a) and the subcellular region (b) where the Ca2+ wave was
observed. Circles indicate the locations of the Ca2+ release sites. (B) Sequential images
of the Ca2+ wave. The arrows indicate the locations of the release sites corresponding
to those in (A). Note that the wave propagates in both directions along the myocyte
but remains in close proximity to the cell membrane. This figure is taken from Fig. 6
of Kockskämper et al. (2001).
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A mathematical model for these subsarcolemmal Ca2+ waves is developed and analysed

in Chapter 4, using an adaptation of the so called fire-diffuse-fire (FDF) model for

Ca2+ waves (Keizer et al., 1998; Keizer and Smith, 1998). Various simplifications are

made in the modelling, for example despite the highly non-uniform dimensions of the

subsarcolemmal region (see Fig. 1.6) the domain is modelled as a perfectly rectangular

space, infinite in extent in the direction of propagation (see Fig. 4.1). Also, the Ca2+

pump rate for pumps in the SR and SL, and the amount of Ca2+ bound to buffers is

assumed to depend linearly on Ca2+ concentration. This approach to the modelling

differs from that taken in Chapters 2 and 3, where all aspects of the model were

treated as realistically as possible. Nevertheless, this allows analytic solutions to be

obtained for the Ca2+ concentration due to a spark, whereas solution of a fully non-

linear reaction-diffusion formulation on a domain of infinite extent would be highly

problematic.

The ease of computation of solutions to the model equations facilitates the compre-

hensive bifurcation analysis of the solutions given in Chapter 4. This contrasts with

the approach taken in Chapters 2 and 3 where the main aim was to determine specific

parameter values for the model equations from experimental data. This bifurcation

analysis of the solutions of the model equations shows how the existence, stability and

speed of these restricted Ca2+ waves depend critically on the values of the model pa-

rameters. It is likely that these results will carry over into computational studies that

use more realistic modelling such as a more detailed geometry of the subsarcolemmal

space. It is plausible that atrial myocytes make use of the confined subsarcolemmal

space to amplify, direct and hasten intracellular Ca2+ release longitudinally through

the cell during the EC process.

It is interesting to ask whether in some cells peripheral membranes can trap IP3 pro-

duced in the membrane and restrict its diffusion into the central parts of the cell.

This question could perhaps be answered using the GFP-PHD technique discussed in

Chapter 3, to image IP3 concentrations in these restricted domains.
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Although the model applies to Ca2+ waves in the subsarcolemmal regions of cells

specifically atrial myocytes (Kockskämper et al., 2001), the results show more generally

how the nature of the cell in the vicinity of the release site may have a significant

effect on the Ca2+ released in a propagating wavefront. For example, in some cells

Ca2+ release might be confined by the tortuous nature of the ER/SR or by other

intracellular organelles such as mitochondria. Therefore, even for continuum models

of Ca2+ waves using a reaction-diffusion formulation, it may not be appropriate to use

reaction terms based solely on the properties of ion channels that have been isolated

in lipid membranes.
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Chapter 2

Modelling calcium and inositol
1,4,5-trisphosphate dynamics
following receptor activation

In this chapter, a mathematical account is given of the processes governing the time

courses of calcium ions (Ca2+), inositol 1,4,5-trisphosphate (IP3) and phosphatidylinos-

itol 4,5-bisphosphate (PIP2) in single cells following the application of external agonist

to metabotropic receptors. A model is constructed that incorporates the regulation of

metabotropic receptor activity, the G protein cascade and the Ca2+ dynamics in the cy-

tosol. It is subsequently used to reproduce observations on the extent of desensitization

and sequestration of the P2Y2 receptor following its activation by uridine triphosphate

(UTP). The theory predicts the dependence on agonist concentration of the change

in the number of receptors in the membrane as well as the time course of disappear-

ance of receptors from the plasmalemma, upon exposure to agonist. In addition, the

extent of activation and desensitization of the receptor, using the Ca2+ transients in

cells initiated by exposure to agonist, is also predicted. Model predictions show the

significance of membrane PIP2 depletion and resupply on the time course of IP3 and

Ca2+ levels. Results of the modelling also reveal the importance of receptor recycling

and PIP2 resupply for maintaining Ca2+ and IP3 levels during sustained application of

agonist.

2.1 Introduction

Agonist-induced activation of second messenger systems plays an important role in

the mobilization of stored Ca2+ inside cells (Berridge, 1993; Miyazaki, 1995). A first

stage in this process is the binding of a ligand to a G-protein coupled receptor, the
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metabotropic receptor. This sets off a cascade of events leading to the activation of the

enzyme phospholipase C (PLC) which hydrolyses the membrane-bound phospholipid,

phosphatidylinositol 4,5-bisphosphate (PIP2) to inositol 1,4,5-trisphosphate (IP3) and

diacylglycerol. IP3 then diffuses into the cytosol and interacts with Ca2+ channels in the

endoplasmic reticulum (ER) causing the release of stored Ca2+ (Tsien and Tsien, 1990;

Amundson and Clapham, 1993). At present there is no complete and unified model of

the processes enumerated above, starting from the binding of ligand to metabotropic

receptors and leading, via a G-protein cascade, to the production of IP3 and the release

of Ca2+ from the endoplasmic reticulum.

Although there is no comprehensive model of the events that occur after ligand binding

to metabotropic receptors, theoretical consideration has been given to various elements

of the process. A number of models have been proposed for the interactions between

receptors, ligands and G-proteins (Zigmond et al., 1982; Linderman and Lauffenburger,

1988; Lauffenburger and Linderman, 1993; French and Lauffenburger, 1997) with the

cubic ternary model (Weiss et al., 1996a,b) providing the most general description of

the interaction between the three species. Monte Carlo style simulations have also

been used to analyse the possible stochastic nature of the interactions (Mahama and

Linderman, 1994; Felber et al., 1996; Shea and Linderman, 1997). The discovery of

desensitization of receptors following phosphorylation on ligand binding with subse-

quent internalization of the receptors has prompted the inclusion of these processes in

more recent attempts to build quantitative models (Riccobene et al., 1999; Adams et

al., 1998).

Modelling the formation of IP3 by the hydrolysis of PIP2, followed by the dynamics

of Ca2+ and IP3 in the cytosol, has also been attempted. These models may include

PIP2 depletion and replenishment (Haugh et al., 2000) and also show how IP3 can

induce Ca2+ oscillations (Cutherbertson and Chay, 1991; De Young and Keizer, 1992;

Atri et al., 1993) as well as Ca2+ waves (Jafri and Keizer, 1994, 1995; Schaff et al.,

1997). With the discovery of elementary Ca2+ events, such as ‘sparks’ and ‘blips’, that

arise from the behaviour of either single ion channels or clusters of them, concentration

has centred on modelling these formations following the opening of IP3-sensitive Ca2+

channels (Smith et al., 1998; Swillens et al., 1998).

Although quantitative models of the action of hormones in inducing secretion have

recently been presented (Blum et al., 2000) there is as yet no comprehensive model of

how activation of metabotropic receptors leads to a response. Construction of such a

model involves consideration of ligand-receptor binding and its desensitization through

phosphorylation and internalization (Fig. 2.1, Box A), of the G-protein cascade leading
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to production of IP3 (Fig. 2.1, Box B) and finally of the IP3-induced Ca2+ release from

the endoplasmic reticulum (Fig. 2.1, Box C). A unified model is presented here and

used to predict observations on the results of P2Y2 receptor stimulation by ligands.

2.2 Methods

This section contains the basic equations that define the model. In order to stream-

line the presentation, additional considerations involved in constructing the model are

reserved for the Discussion section and detailed mathematical derivations are given in

Appendices A and B.

2.2.1 Regulation of metabotropic receptor activity

The regulation of metabotropic receptor activity has several components: phosphory-

lation of the receptors and their uncoupling from G-proteins; sequestration or inter-

nalization of the receptors; down-regulation of the receptors as a consequence of their

destruction in lysozomes or alternatively dephosphorylation and recycling of the recep-

tors to the membrane. The model presented here is an adaptation of that given by

Hoffman et al. (1996) for the N-formyl peptide receptor for neutrophils, the difference

being that internalized receptors are allowed to recycle to the surface. The elements of

the model are depicted in Fig. 2.1 within the box marked A, where reactions involving

ligand (L) and receptors (R) are given. Receptors on the cell surface bind extracellular

ligand reversibly, with forward and backward rate constants k+
1 and k−1 , respectively.

It is assumed that ligand is not depleted by binding with receptors and hence has a

predetermined concentration.

Receptors occupied with ligand, LR, are phosphorylated irreversibly to LRP at a rate

kp but phosphorylated receptors, RP , remain free to interact with the ligand, with

possibly different binding kinetics governed by rates k±2 (Hoffman et al., 1996; Adams

et al., 1998; Riccobene et al., 1999). Phosphorylation causes desensitization of the

receptors and so G-protein may only be activated by unphosphorylated receptors (R

and LR), as indicated by the broken lines joining boxes A and B in Fig. 2.1. The

model presented here has an aspect in common with the cubic ternary complex model

(Weiss et al., 1996a,b) in that G-proteins are allowed to bind to receptors which are

both bound and unbound with ligand. However, analysis of the model as given in

Appendices A and B shows that with certain assumptions the receptor/ligand and G-

protein systems largely decouple and only the proportion of activated receptors needs
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to be specified in the G-protein cascade model.

Phosphorylated receptors are internalized at a rate that is dependent on agonist oc-

cupancy and this is incorporated into the model by having the bound phosphorylated

receptors, LRP , internalized at rate ke. These internalized receptors, RI , are then

dephosphorylated and recycled back to the surface at a rate kr.

The equations describing the processes depicted in Box A of Fig. 1 are:

d[R]

dt
= −k+

1 [L][R] + k−1 [LR] + kr[RI ], (2.1)

d[LR]

dt
= k+

1 [L][R] − (k−1 + kp)[LR], (2.2)

d[LRP ]

dt
= k+

2 [L][RP ] − (k−2 + ke)[LRP ] + kp[LR], (2.3)

d[RP ]

dt
= −k+

2 [L][RP ] + k−2 [LRP ], (2.4)

d[RI ]

dt
= −kr[RI ] + ke[LRP ], (2.5)

where [L] denotes the concentration of ligand L, [R] and [LR] are the numbers of

unbound and bound receptors, [RP ] and [LRP ] are the corresponding phosphorylated

quantities and [RI ] is the number of internalized receptors. Adding eqns (2.1)-(2.5)

gives zero and so

[R] + [LR] + [LRP ] + [RP ] + [RI ] = [RT ], (2.6)

where [RT ], the total number of receptors, is a constant.

The kinetics of ligand binding are considered to be fast relative to the other processes

in the model. Eqns (2.1)-(2.5) can be combined to leave only the slow kinetics, giving

d[RS]

dt
= kr[RI ] − kp[LR], (2.7)

d[RS
P ]

dt
= −ke[LRP ] + kp[LR], (2.8)

where [RS] = [R]+ [LR] is the total number of unphosphorylated surface receptors and

[RS
P ] = [RP ] + [LRP ] is the total number of phosphorylated surface receptors.
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by the hydrolysis of PIP2. Box C outlines the Ca2+ dynamics in the cytosol and the
endoplasmic reticulum.



C
h
ap

ter
2:

C
a

2
+

an
d

IP
3

d
y
n
am

ics
23

-PLC β1−

3

α β γ

α β γ

P Y 
2 2 .GTPGα

.GTPGα
.GTPGα -PLC β1 .GTPGα Ca2+

Ca2+

PLC β1.GTPGα -PLC β1 .GDPGα

Ca2+

Gβγ

Gβγ.GDPGα

G.GTPP Y 
2 2

PLC β1

Binding of active G
protein to PLC

PIP
2

Hydrolysis of
by active complexPIP

2

Binding of G protein - PLC
complex to

Binding of inactive G protein
to active receptor

Exchange of GDP for GTP
and dissociation from receptor G protein into subunits

Dissociation of

Dissociation of 
PLC from inactive
G protein subunit

Reassociation of

by PLC G protein subunits

PIP
2

� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �� � � �
� � �� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �
� �� �� �� �

Hydrolysis of GTP

Cytoplasm

Cell membrane

2+Binding of Ca    to catalytic site

2
PIP

Cytoplasm

Cell membrane

( Active

Cytoplasm

Cell membrane

G.GDP

G.GDPαG

α α α

.GDP

α

β1-PLC

α α

DAG

receptor )

α

IP

-G.GDP

α

γβ

α

γβα γβ αβ γ

F
igu

re
2.2:

D
etailed

sch
em

atic
d
iagram

of
th

e
G

p
rotein

cascad
e

u
sed

in
th

e
m

ath
e-

m
atical

m
o
d
ellin

g.
T

h
is

fi
gu

re
rep

resen
ts

a
close

u
p

of
p
art

of
th

e
p
lasm

a
m

em
b
ran

e
(p

resen
ted

in
th

ree
row

s
for

con
ven

ien
ce)

an
d

d
ep

icts
all

sp
ecies

p
articip

atin
g

in
th

e
cascad

e
an

d
th

e
reaction

s
o
ccu

rrin
g

b
etw

een
th

em
.

In
A

p
p
en

d
ices

A
an

d
B

d
etails

of
th

e
m

ath
em

atical
m

o
d
ellin

g
of

th
e

G
p
rotein

cascad
e

are
given

,
w

h
ich

lead
s

u
ltim

ately
to

eq
n
s

(2.23)-(2.27).



Chapter 2: Ca2+ and IP3 dynamics 24

Applying the rapid ligand kinetics assumption (compare the rapid buffer approxima-

tion: Wagner and Keizer, 1994) gives the following relations:

[R] =
K1[R

S]

K1 + [L]
, (2.9)

[LR] =
[L][RS ]

K1 + [L]
, (2.10)

[LRP ] =
[L][RS

P ]

K2 + [L]
, (2.11)

[RP ] =
K2[R

S
P ]

K2 + [L]
, (2.12)

where K1 = k−1 /k
+
1 , K2 = k−2 /k

+
2 . Substituting into eqns (2.7)-(2.8) and using (2.6)

gives

d[RS]

dt
= kr[RT ] −

(
kr +

kp[L]

K1 + [L]

)
[RS] − kr[R

S
P ], (2.13)

d[RS
P ]

dt
= [L]

(
kp[R

S]

K1 + [L]
− ke[R

S
P ]

K2 + [L]

)
. (2.14)

It is likely that some fraction of the surface receptors do not recycle, perhaps through

being immobile, and are prevented from being endocytosed (see, for example, Zigmond

et al., 1982, where there is a discrepancy between the theoretical and experimental

surface receptor numbers at equilibrium.) This effect is incorporated into the present

model by supposing that a fraction ξ of receptors are mobile, so that the total number

of mobile receptors is now ξ[RT ] and the remaining receptors, numbering (1 − ξ)[RT ],

are immobile and are assumed not to participate in second-messenger signalling.

The equilibrium solution of eqns (2.13) and (2.14), that is, the solution for which the

ligand concentration has been held constant for a very long time, is found by setting

d[RS]/dt = d[RS
P ]/dt = 0 and solving for [RS] and [RS

P ]. This gives the equilibrium

number of surface receptors, [RS
E] = lim

t→∞
([RS] + [RS

P ]), as

[RS
E] =

kr

[
1 +

kp

ke

(
K2 + [L]

K1 + [L]

)]

[
kr +

kp[L]

K1 + [L]
+
krkp

ke

(
K2 + [L]

K1 + [L]

)]ξ[RT ] + (1 − ξ)[RT ]. (2.15)

2.2.2 G-protein cascade

The elements of this part of the overall model are shown in Box B of Fig. 2.1, and

involve the hydrolysis of membrane-bound PIP2, its subsequent replenishment and the

degradation of IP3 in the cytosol. A simplified model for the G-protein cascade is used,
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where the activation rate of G-protein is proportional to both the amount of active

receptor and inactive G-protein (G·GDP) and the deactivation rate is proportional to

the amount of active G-protein (Gα ·GTP). Whereas the ligand bound receptor (LR)

most strongly activates PLC, there is the possibility that the unbound receptor (R)

may also contribute to IP3 production, albeit at a lower rate, and this is taken to

account for the basal concentration of IP3. The resulting equation for the amount of

Gα · GTP, denoted by [G], is

d[G]

dt
= ka(δ + ρr)([GT ] − [G]) − kd[G], (2.16)

where ka and kd are the G-protein activation and deactivation rate parameters, [GT ]

is the total number of G-protein molecules, δ is the ratio of the activities of the ligand

unbound and bound receptor species and ρr is the ratio of the number of ligand bound

receptors to the total number of receptors, ρr = [LR]/(ξ[RT ]), so from eqn (2.10),

ρr =
[L][RS]

ξ[RT ](K1 + [L])
. (2.17)

The assumptions involved in the derivation of the simplified model are that the binding

of subspecies participating in the G-protein cascade (see Fig. 2.2) is rapid relative to

the other time scales in the model and this binding is well below saturation. Additional

requirements are that the dissociation of G·GTP into the subunits Gα · GTP, Gβγ is

irreversible, as is also the association of the Gα·GDP and Gβγ subunits into G·GDP.

Full details of the modelling of the G-protein cascade, leading to the above simplified

version, are given in Appendix A.

PLC (PLC-β) is considered to be fully activated when bound to both Gα · GTP and

Ca2+. Although, as shown in Appendix A, the model allows for a contribution by

unbound PLC towards the hydrolysis of PIP2 (Rhee and Bae, 1997), this has been not

been included here. The rate of hydrolysis of PIP2, assuming rapid kinetics for the

binding of Ca2+, is rh[PIP2] where [PIP2] is the number of PIP2 molecules and the rate

coefficient is

rh = α

(
[Ca2+]

Kc + [Ca2+]

)
[G], (2.18)

where α is an effective signal gain parameter, [Ca2+] is the cytosolic Ca2+ concentration

and Kc is the dissociation constant for the Ca2+ binding site on the PLC molecule.

Details of the derivation of eqn (2.18) are given in Appendix A. Hydrolysis of PIP2

forms IP3 molecules at a rate rh[PIP2] and these are free to diffuse into the cytosol

where they are degraded by intracellular kinases. The degradation of IP3 is assumed

to occur at a rate kdeg and hence the equation for the total number of IP3 molecules,

[IP3], is
d[IP3]

dt
= rh[PIP2] − kdeg[IP3]. (2.19)
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Replenishment of PIP2 is required for IP3 production to be maintained over sustained

periods of agonist stimulation. Although the means by which this regeneration takes

place is complex (Batty et al., 1998; Takenawa et al., 1999; Cockcroft and De Matteis,

2001), the essentials of this process are captured by assuming that there exists an

intracellular pool of phospholipid, [H] (see Fig. 2.1, Box B) to which IP3 is degraded.

This phospholipid is then phosphorylated and returned to the cell surface at a constant

rate rr, so the equations for the numbers of PIP2 and hydrolysed IP3 molecules are

thus

d[PIP2]

dt
= −rh[PIP2] + rr[H], (2.20)

d[H]

dt
= kdeg[IP3] − rr[H]. (2.21)

Adding eqns (2.19),(2.20) and (2.21) and integrating over time shows that [PIP2] +

[IP3]+ [H] = [(PIP2)T] where [(PIP2)T] is the constant total number of PIP2 molecules

and so eqn (2.20) can be written

d[PIP2]

dt
= −(rh + rr)[PIP2] − rr[IP3] + rr[(PIP2)T]. (2.22)

Later work will require the molar concentration of IP3, so [IP3] is now replaced by

Naν[IP3] where ν is the volume of the cell, Na is Avogadro’s constant and [IP3] is the

molar concentration of IP3.

The full equations for the G-protein cascade are thus

d[G]

dt
= ka(δ + ρr)([GT ] − [G]) − kd[G], (2.23)

d[IP3]

dt
= rhN

−1
a ν−1[PIP2] − kdeg[IP3], (2.24)

d[PIP2]

dt
= −(rh + rr)[PIP2] − rrNaν[IP3] + rr[(PIP2)T], (2.25)

rh = α

(
[Ca2+]

Kc + [Ca2+]

)
[G], (2.26)

ρr =
[L][RS]

ξ[RT ](K1 + L)
. (2.27)

In principle, these equations enable calculation of the amount [G] of activated G-

protein, the amount [PIP2] of PIP2 and the concentration [IP3] of IP3 (see below for

details of the solution method). The missing ingredient is the free cytosolic Ca2+

concentration, [Ca2+], and this requires a model for the Ca2+ dynamics in the cytosol

and endoplasmic reticulum (Box C of Fig. 2.1), for which the crucial input is the IP3

concentration, [IP3].
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2.2.3 Cytosolic Ca2+ dynamics

The cytosol contains an endoplasmic reticulum (ER) which behaves as a Ca2+ store

and exchanges Ca2+ with the cytosol via IP3 sensitive channels, Ca2+ pumps and leaks.

Both the cytosol and the ER are assumed to contain Ca2+ buffers. The following model

is an adaptation of the one given by Li and Rinzel (1994) for simplified IP3 channel

kinetics, but includes rapid Ca2+ buffering as described by Wagner and Keizer (1994).

The equation governing the concentration of free cytosolic Ca2+, [Ca2+], is

d[Ca2+]

dt
= β

{
εr

[
η1m

3
∞h

3 + η2

]
([Ca2+

ER
] − [Ca2+]) − η3

(
([Ca2+])2

k2
3 + ([Ca2+])2

)}
, (2.28)

where [Ca2+
ER

] is the concentration of free Ca2+ in the ER, β is related to the buffering

(see below), η1, η2 and η3 are effective permeability constants for the IP3 channels,

membrane leakage and Ca2+ pumps respectively and k3 is the pump dissociation con-

stant. The quantity h is the fraction of IP3 channels not yet inactivated by Ca2+

binding, and its time course is governed by the differential equation

dh

dt
=
h∞ − h

τh
, (2.29)

where

τh =
1

a2(ζ + [Ca2+])
, (2.30)

h∞ =
ζ

ζ + [Ca2+]
, (2.31)

ζ = d2
[IP3] + d1

[IP3] + d3
, (2.32)

where d1, d2, d3 and a2 are channel kinetic parameters and [IP3] is the concentration

of IP3 in the cytosol. The remaining quantity is

m∞ =

(
[IP3]

d1 + [IP3]

)(
[Ca2+]

d5 + [Ca2+]

)
. (2.33)

The Ca2+ buffers in the cytosol are assumed to comprise an endogenous stationary

buffer and an exogenous mobile buffer, in this case fura-2. The buffering function β is

defined as

β =

(
1 +

Ke[Be]

(Ke + [Ca2+])2
+

Kx[Bx]

(Kx + [Ca2+])2

)−1

(2.34)

where [Be] and Ke are the total concentration and dissociation constant, respectively, of

the endogenous buffer and [Bx], Kx are the corresponding parameters for the exogenous

buffer.
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The Ca2+ buffer in the ER is assumed to be of high concentration and low affinity,

implying that the total concentration of Ca2+ in the ER, [(Ca2+
ER

)T], is approximately

equal to that bound to the buffer and thus approximately equal to ([BER]/KER)[Ca2+
ER

]

where [BER] is the total concentration of ER buffer andKER is the ER buffer dissociation

constant.

The conservation condition for total Ca2+, both bound and unbound in cytosol and

ER, is

εr[(Ca2+
ER

)T] + [(Ca2+
cyt

)T] = [(Ca2+)T], (2.35)

where εr is the ratio of the ER volume to the cytosol volume and [(Ca2+)T] is the

total concentration of Ca2+ in terms of the cytosolic volume. Substituting the above

approximations and also the ratio γ of free to total Ca2+ in the cytosol,

γ =

(
1 +

[Be]

Ke + [Ca2+]
+

[Bx]

Kx + [Ca2+]

)−1

, (2.36)

into eqn (2.35), gives the relation between free ER Ca2+and free cytosolic Ca2+:

[Ca2+
ER

] =
KER

[BER]εr

(
[(Ca2+)T] − [Ca2+]/γ

)
. (2.37)

The free Ca2+ concentration, [Ca2+], is determined by solving eqns (2.28) and (2.29),

with the definitions (2.30)-(2.34),(2.36),(2.37) and with initial values of [Ca2+] and h.

2.2.4 Initial conditions and methods of solution

The stimulus applied to the cells is taken to be a step application of agonist,

[L](t) =

{
0 if t < 0,
[L] if t ≥ 0.

(2.38)

Eqns (2.13),(2.14),(2.23)-(2.27) and (2.28)-(2.29), with the appropriate initial condi-

tions, suffice to determine the transient in the modelled quantities for this stimulus.

The basal levels of [PIP2], [Ca2+], [IP3] and h, respectively [PIP2]bas, [Ca2+]bas, [IP3]bas

and hbas were determined by integrating the equations for a sufficiently long time prior

to agonist stimulation. The basal level of Gα ·GTP, [G]bas, can be determined exactly

by setting d[G]/dt = 0 in eqn (2.23) and noting that [L] = 0 implies ρr = 0. Solving

for G gives

[G]bas =
kaδ[GT ]

kaδ + kd
. (2.39)
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The appropriate initial conditions for the model equations are thus

[RS](0) = ξ[RT ], [RS
P ](0) = 0, [G](0) = [G]bas,

[PIP2](0) = [PIP2]bas, [IP3](0) = [IP3]bas, [Ca2+](0) = [Ca2+]bas,

h(0) = hbas.





(2.40)

Approximate expressions for [PIP2]bas, [Ca2+]bas, [IP3]bas and hbas, can be obtained

as follows. The parameter values governing the Ca2+ dynamics are such that in the

absence of ligand the contribution of the IP3 channels to the Ca2+ current across the

ER membrane is small compared to that of the leak and pumps. Also, both the free

and total cytosolic Ca2+ is small compared to the free and total ER Ca2+. Using these

approximations, eqn (2.37) becomes

[Ca2+
ER

] =
KER[(Ca2+)T]

[BER]εr

and at equilibrium the free Ca2+ concentration as given by eqn (2.28) reduces to

η2KER[(Ca2+)T]

[BER]
− η3[Ca2+]2

k2
3 + [Ca2+]2

= 0. (2.41)

Solving eqn (2.41) for [Ca2+] gives an approximation for [Ca2+]bas:

[Ca2+]bas =
k3√

η3[BER]

η2KER[(Ca2+)T]
− 1

. (2.42)

Next, approximate expressions for [IP3]bas and [PIP2]bas can be found by setting d[IP3]/dt =

d[PIP2]/dt = 0 in eqns (2.24) and (2.25) with rh = (rh)bas = α

(
[Ca2+]bas

Kc + [Ca2+]bas

)
[G]bas.

Solving for [IP3] and [PIP2] gives

[IP3]bas =
(rh)basrr[(PIP2)T]

νNa (kdeg((rh)bas + rr) + (rh)basrr)
, (2.43)

[PIP2]bas =
kdegrr[(PIP2)T]

kdeg((rh)bas + rr) + (rh)basrr
, (2.44)

and the parameter δ in eqn (2.39) may be chosen to give the desired value of [IP3]bas.

Finally, eqn (2.29) implies that in equilibrium h = h∞ and substituting [Ca2+]bas and

[IP3]bas into eqn (2.31) and (2.32) gives the approximation for hbas,

hbas =
d2(d1 + [IP3]bas)

d1d2 + [IP3]bas([Ca2+]bas + d2) + d3[Ca2+]bas

. (2.45)

The non-linear nature of the equations for the Ca2+ dynamics precludes an analytic

solution to the full equations and solutions were instead computed numerically using
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the MATLAB computer package. However, the equations for [RS] and [RS
P ], eqns (2.13)

and (2.14), are linear and an explicit solution can be determined. The solution for the

total number of surface receptors, [RS
T ], given the stimulus (2.38) and initial conditions

of eqn (2.40) is

[RS
T ] =





[RT ], if t < 0,

[RS
E] +

([RT ] − [RS
E])

(λ2 − λ1)

[
λ2e

λ1t − λ1e
λ2t
]
, if t ≥ 0,

(2.46)

where the eigenvalues λ1, λ2 are the roots of the quadratic equation

λ2 +

(
kr +

kp[L]

K1 + [L]
+

ke[L]

K2 + [L]

)
λ+

(
kr +

kp[L]

K1 + [L]

)
ke[L]

K2 + [L]
+

krkp[L]

K1 + [L]
= 0.

(2.47)

It is of interest to note that for sufficiently high ligand concentration one eigenvalue

depends only on the desensitization parameter kp and the other depends only on the

internalization and recycling parameters ke and kr. This dependence occurs when [L]

is sufficiently large that the term krke[L]/(K2 + [L]) in the constant term of eqn (2.47)

is negligible compared to the other two terms. In this case, eqn (2.47) reduces to an

equation that has solutions

λ1 =
−kp[L]

K1 + [L]
, (2.48)

λ2 = −kr −
ke[L]

K2 + [L]
. (2.49)

In the limit [L] → ∞ these solutions are λ1,∞ = −kp and λ2,∞ = −(kr + ke).

The full set of parameters used in the model together with their numerical values are

listed in Table 2.1. References are given to those parameters whose values were obtained

from the literature. Other parameters were determined by fitting the solutions of the

equations to the experimental data of Garrad et al. (1998) in this chapter and Hirose

et al. (1999) in the following chapter. This procedure is discussed in detail below.

2.3 Results

2.3.1 Model predictions for desensitization and sequestration

The theory developed above is now used to calculate the effects of applying UTP to

P2Y2 receptors, where comparison can be made with the experimental results of Garrad

et al. (1998). Figure 2.3(a) shows the equilibrium number of surface receptors [RS
E],
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computed using eqn (2.15), expressed as a percentage of [RT ], as a function of the

concentration of UTP. Also shown is the corresponding experimental data taken from

Fig. 5A of Garrad et al. (1998). The transient behaviour of the number of surface

receptors, following a 1 mM application of UTP at t = 0, is shown in Fig. 2.3(b),

where the solid line comes from the solution of eqn (2.46) and the points with error

bars are experimental values from Fig. 4A of Garrad et al. (1998).

Eqn (2.46) shows that the theoretical transient in Fig. 2.3(b) can be expressed as the

linear combination of the two solutions eλ1t and eλ2t, where the eigenvalues λ1 and λ2

are solutions of eqn (2.47). Figure 2.4 shows the variations in the real parts of these

two eigenvalues with respect to ligand concentration. The large relative difference in

magnitude between the eigenvalues is evident for ligand concentrations above about

1 µM. Here, the eigenvalues are real and so any solution is the sum of two decaying

exponential terms. The transient in [RS
T ] shown in Fig. 2.3(b) comprises two such

terms plus a constant term due to the immobile receptors, as seen from eqn (2.46).

The asymptotic values of the two curves labelled λ1 and λ2 in Fig. 2.4 are −0.0300

s−1 and −0.00622 s−1 which are in good agreement with the theoretical limiting values

of λ1 and λ2: λ1,∞ = −0.03 s−1 and λ2,∞ = −6.175 × 10−3 s−1. The approximations

for λ1 and λ2 given by eqns (2.48) and (2.49) are good also for [L]=1 mM. Because of

the large relative difference between the eigenvalues, for a sufficiently long time after

agonist application (≈ 2 minutes) the contribution of the eλ1t term can be ignored

and the transient in [RS
T ] shown in Fig. 2.3(b) can thus be approximated by a single

exponential term proportional to exp(−0.00618t). In the vicinity of 0.1 µM there is a

range of ligand concentrations for which the eigenvalues have imaginary parts, meaning

that [RS
T ] exhibits damped oscillatory behaviour; however, the imaginary parts turn

out to be too small for these oscillations to be readily observed over the time scale

used.

Figures 2.5(a)-(d) show the theoretical transients in IP3 concentration, Ca2+ concen-

tration, amount of PIP2 and amount of activated G-protein (Gα.GTP), respectively,

for a 1 mM application of UTP at t = 0. These transients were obtained from eqns

(2.13),(2.14) and (2.23)-(2.29), using initial conditions given by eqn (2.40). In Figs

2.5(a) -(c), solutions are plotted for three different values of the PIP2 replenishment

rate parameter : rr=10, 0.1 and 0.015 s−1. The smaller the value of rr the greater the

maximum depletion in the amount of PIP2 (Fig. 2.5(c)) and the faster the rate of decay

of the IP3 and Ca2+ concentrations (Fig. 2.5(a) and (b)). Lowering the value of rr

lowers the peak IP3 concentration and to a lesser extent the peak Ca2+ concentration.

The peak in activated G-protein (7.1%) is low due to the low ratio of ka to kd; also,

the amount of activated G-protein does not depend on rr.
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Figure 2.3: Experimental and theoretical numbers of surface receptors, (a) as a function
of ligand concentration and (b) as a function of time following a step application of
1 mM UTP. In (a), the theoretical curve was produced by solving eqn (2.15) for the
equilibrium concentration of surface receptors, [RS

E], for different values of [L] over
the range of ligand concentrations shown on the abscissa; the ordinate shows [RS

E] as
a percentage of the total number of receptors, [RT ]. Points with error bars give the
experimental data taken from figure 5A of Garrad et al. (1998). In (b), the theoretical
curve was produced by solving eqn (2.46) for the instantaneous concentration of surface
receptors, [RS

T ], for the time span shown. The results are expressed as a percentage of
the total number of receptors, [RT ]. Error bars represent the experimental data taken
from Fig. 4A of Garrad et al. (1998).
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Figure 2.4: Variations in the real parts of the eigenvalues of eqns (2.13) and (2.14)
with respect to ligand concentration. The eigenvalues, λ1 and λ2, are the roots of eqn
(2.47) and this equation was solved for different values of [L] over the range of ligand
concentrations shown. The time rate of decay of the number of surface receptors (see
Fig. 2.3(b)) is governed by eλt. For ligand concentration above about 1 µM, |λ1| � |λ2|
so the term eλ1t vanishes rapidly with increasing time and the decay is governed almost
entirely by eλ2t.
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Figure 2.5: Theoretical cytosolic IP3 and Ca2+ concentrations and amounts of PIP2

and Gα · GTP as functions of time for a step application of 1 mM of UTP at t = 0.
The curves were obtained by solving eqns (2.13),(2.14) and (2.23)-(2.29) with initial
conditions given by eqn (2.40) and ligand stimulus defined by eqn (2.38). (a) shows
the resulting time course of IP3 concentration, [IP3]; (b) shows the time course of
Ca2+ concentration, [Ca2+]; (c) shows the time course of the amount of PIP2, [PIP2]
(note the longer time scale in this figure); (d) shows the time course of the amount of
activated G protein (Gα · GTP), [G]. In (a)-(c) results are shown for three different
rates of PIP2 replenishment, rr=10, 0.1 and 0.015 s−1.
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Figure 2.6: Variations in (a) peak and (b) steady-state values of IP3 concentration
with respect to ligand concentration. Eqns (2.13),(2.14) and (2.23)-(2.29) with initial
conditions given by eqn (2.40) and ligand stimulus given by eqn (2.38) were solved
to find the peak [IP3] and the steady-state [IP3] for a range of ligand concentrations.
Results are given for three different rates of PIP2 replenishment, rr=10, 0.1 and 0.015
s−1. Note the very different concentration scales on each of the ordinate axes: µM in
(a) and nM in (b).
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Binding of ligand to the receptors causes an initial period of increase of IP3 concentra-

tion, with it reaching a maximum at approximately 14.1, 8.0 and 7.2 s after application

of agonist for rr =10, 0.1 and 0.015 s−1, respectively. Similarly, the Ca2+ concentration

peaks after 16.5, 11.5 and 10.1 s. The initial increase of IP3 and Ca2+ concentration

follows the initial rise of activated G-protein levels but the time to peak is decreased

by depletion of PIP2 levels. The time for activated G-protein to peak is 13.1 s and

this is determined mainly by the GTPase rate parameter. Thereafter, desensitization

of the agonist bound receptors causes a decrease in [IP3], [Ca2+] and [Gα · GTP] on a

time scale of minutes.

In the steady-state, the IP3 and Ca2+ concentrations remain slightly above the basal

level due to the slow recycling to the surface of internalized, dephosphorylated recep-

tors. The large difference between the peak and steady-state concentrations of IP3, for

the three different values of rr, is evident in Figs. 2.6(a) and 2.6(b). These curves were

produced by solving eqns (2.13),(2.14) and (2.23)-(2.29) with initial conditions given

by eqn (2.40) and ligand stimulus by eqn (2.38). In each figure, both the maximum

and steady-state curves are monotonic increasing and show characteristic saturation at

large concentrations of agonist. The peak IP3 concentration decreases for decreasing

values of rr because there is greater depletion of PIP2 and hence the maximum rate of

IP3 production will be lower (see also Fig. 2.5(a)). The equilibrium IP3 concentration

is less sensitive to changes in rr, because in the steady-state the level of receptor activ-

ity does not significantly perturb the amount of PIP2 from the basal level, [PIP2]bas.

The peak IP3 concentration actually begins at the basal level of IP3 (10 nM) at low

agonist concentrations but this is difficult to distinguish from zero concentration of IP3

in Fig. 2.6(a).

The model can also be used to reproduce the results of experiments performed by Gar-

rad et al. (1998) (see their Fig. 3A) designed to measure the agonist concentration

dependence of receptor activation and desensitization. In their work, the activation

curve was constructed by measuring the peak Ca2+ concentration produced after ap-

plication of agonist. The desensitization curve was constructed by incubating the cells

with agonist of the specified amount for 5 minutes, followed by a wash period and then

by the reapplication of the EC50 amount of agonist derived from the activation curve

(the amount of agonist required to illicit half maximal Ca2+ response). This experi-

mental procedure can be simulated by extending eqn (2.38) in a piecewise fashion and

solving equations eqns (2.13),(2.14) and (2.23)-(2.29) with initial conditions given by

eqn (2.40). A wash period of 100 seconds was used in the simulations so as to allow

the return of the model variables [IP3], [G] and [Ca2+] to their equilibrium values. The

results of the simulations are shown in Fig. 2.7(a) along with the experimental data
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Figure 2.7: Activation and desensitization of P2Y2 receptors. In (a), the theoretical
curves were constructed by solving eqns (2.13),(2.14) and (2.23)-(2.29) with initial
conditions given by eqn (2.40) and with a ligand stimulus regime that simulates the
experiments performed by Garrad et al. (1998) (see text). Results are given for PIP2

replenishment rate parameter values rr = 10 s−1 and rr = 0.015 s−1. The points with
error bars are the experimental data taken from Fig. 3A of Garrad et al. (1998). (b)
shows two examples of theoretical Ca2+ transients of the type used to construct the
activation and desensitization curves in (a). Results are given for the application of
ligand concentrations of 5 µM and 50 nM. For each ligand stimulus results are given
for PIP2 replenishment rates rr = 10 s−1 and rr = 0.015 s−1. The magnitude of the
first peak defines the height of the activation curve and the magnitude of the second
peak defines the height of the desensitization curve.
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from Garrad et al. (1998), Fig. 3A. The shape of the desensitization curve is a

result of there being a low desensitization rate at low agonist concentrations, thus

leaving an abundance of unphosphorylated receptors when the agonist is re-applied.

At high agonist concentrations most of the receptors have been phosphorylated by

the time agonist is applied a second time, hence leading to a smaller response. The

activation and desensitization curves have been plotted for both rr = 10 s−1 and

rr = 0.015 s−1 (the curves for the case of rr = 0.1 s−1 have not been shown because

they do not markedly differ from those of the case rr = 10 s−1). The smaller the

value of rr, the greater the depletion of PIP2 from the membrane over the course of

the experiment and hence the smaller the Ca2+ response after the second application

of agonist. However, the desensitization curves for the two choices of rr are both

consistent with the experimental data. For rr = 10 s−1, the theoretically determined

EC50 and IC50 levels (the latter being the amount of agonist required to produce half

maximal desensitization) values were 180 nM and 489 nM respectively. For comparison,

the experimental values for EC50 and IC50 determined by Garrad et al. (1998) are 250

± 30 nM and 430 ± 100 nM (for the wild-type receptor).

Fig. 2.7(b) shows theoretical Ca2+ transients resulting from the simulated experimental

procedure used to construct the theoretical activation-desensitization curves in Fig.

2.7(a). Curves for an application of a small (50 nM) and a large (5 µM) concentration

of ligand are shown, for both values of rr. For each of the curves in Fig. 2.7(b),

the magnitude of the first peak corresponds to the height of the activation curve in

Fig. 2.7(a) and the magnitude of the second peak corresponds to the height of the

desensitization curve.

2.3.2 Parameter value selection

In this section, some explanation of how the unknown parameter values (indicated by

the ‘See text’ column in Table 2.1) were chosen. In some cases, recourse was made to

the parameter values determined in Chapter 3 where the model was used to fit other

experimental data for purinergic stimulation of cells.

In the absence of a definite value for K1 for the P2Y2 receptor, a value of 5 µM has

been used. This value was found to be optimal in fitting the model to experimental

data. Once K1 is set, the horizontal positioning of the theoretical curve in Fig. 2.3(a)

is determined by the value K2 (and to a less extent by the values of kr and ke, see

below) and this was chosen according to the experimental data in that figure.

The parameter ξ was adjusted to set the concentration of surface receptors at saturating
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agonist levels evident in the experimental data in Fig. 2.3(a). Without an immobile

fraction of receptors, the ratio kr/ke would have to be made larger to give a higher

rate of recycling of receptors. However, this however would mean a higher fraction of

dephosphorylated receptors at large agonist concentrations and would not allow a good

fit of the theoretical desensitization curve to the data in Fig. 2.7(a). Hence the ratio of

the values of kr and ke was kept small and adjusted to obtain a best fit in Fig. 2.3(a).

The value of ke itself was chosen to fit the decay rate of the experimental transient in

the number of surface receptors in Fig. 2.3(b).

The value for ka used was adapted from the results of Mahama and Linderman (1994)

for stochastic simulations of G-protein dynamics. In their paper, a simplified equation

is given where the rate of G-protein activation is proportional to the numbers of inactive

G-proteins and ligand bound receptors (see their eqn 6). The simplified theory is shown

to be applicable for the case of low diffusivity and no ligand switching, for which the

cell averaged encounter rate constant kc = 1 × 10−6 s−1 (see their Fig. 8). The value

for ka is assigned the value of this rate in the presence of the maximum number of

signalling receptors, hence ka = kcξ[RT ]. Estimates for the GTPase rate parameters

vary widely between cell types; for example, a range of 0.02 - 2 s−1 for the GTPase

rate, is quoted by Mahama and Linderman (1994). A suitable value for the G-protein

deactivation rate parameter, kd, determined in Chapter 3 from experimental rise time

data, lies in this range, and the same value was used in this chapter. Also determined

in Chapter 3 was the value of the dissociation constant for the binding of Ca2+ to PLC,

Kc = 0.4 µM, and this value was also used in this chapter.

The 1321N1 cells will be assumed to have a volume, ν = 5 × 10−16 m3. This value is

based on a spherically shaped cell of diameter approximately 10 µm.

The value of rr determines the rate of recovery of PIP2 levels after most of the P2Y2

receptors have been desensitized. The value of rr = 0.015 was chosen to allow recovery

of PIP2 in approximately 5 minutes, this being a similar recovery period to that mea-

sured by Vàrnai and Balla (1998) for angiotensin II stimulation of BAG cells (see their

Fig. 4B) and Waugh et al. (1999) for stimulation of the Chinese hamster ovary cells

expressing the human m1-muscarinic receptor (see their Fig. 3). For this value of rr,

the value of [(PIP2)T] was chosen so that a maximum of approximately 80% depletion

of PIP2 mass occurred during agonist stimulation, similar to that shown in Fig. 4B

of Vàrnai and Balla (1998). In practice, the levels and rate of PIP2 replenishment are

likely to vary widely between different cells. Hence the other two values of rr were

chosen to give a range of lower depletion levels of PIP2 during agonist stimulation.

The desired basal level of Ca2+ was to be approximately 100 nM (a typical value widely
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used in theoretical studies and the same as that used in Chapter 3). The desired

maximum possible change in Ca2+ concentration was chosen to be approximately 310

nM which lies within the experimentally determined range 282 ± 80 nM given in Garrad

et al. (1998). These concentrations were attained by making appropriate choices for

η1, η2, η3 and [(Ca2+)T], which are listed in Table 2.1. The numerically determined

values of [Ca2+]bas and hbas are 96.1 nM and 0.6158 which are close to the values of

[Ca2+]bas=115.6 nM and hbas=0.5737, computed using eqn (2.42).

Based on the observation by Luzzi et al. (1998) that in an unstimulated cell the con-

centration of IP3 is not more than a few tens of nano molar, the basal concentration

of IP3 has been chosen to be 10 nM. The three values of δ corresponding to the three

values of rr, chosen to obtain [IP3]bas = 10 nM, are given in Table 2.1. Also shown, for

the case of rr = 10 s−1, are the corresponding values of [G]bas, [PIP2]bas, [Ca2+]bas and

hbas. These values do not differ significantly from those of the cases rr = 0.1 s−1 and

0.015 s−1.

The value of kp was chosen, first roughly, so as to make the Ca2+ and IP3 transients

reach equilibrium levels, at saturating ligand concentrations, within approximately

five minutes. The values of α, kp and K1 all affect the horizontal positioning of the

theoretical activation and desensitization curves (and hence the EC50 values of these

curves). These parameters were adjusted to match the experimental data in Fig. 2.7(a).
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Symbol Definition Value Cell type Notes

Receptor regulation

[RT ] Total no. of P2Y2 receptors 2 × 104 1321N1 Garrad et al. (1998)
(22767 ± 9753 cell−1)

K1 Unphosphorylated receptor dissociation constant 5 µM See text.
K2 Phosphorylated receptor dissociation constant 100 µM ”
kr Receptor recycling rate 1.75 × 10−4 s−1 ”
kp Receptor phosphorylation rate 0.03 s−1 ”
ke Receptor endocytosis rate 6 × 10−3 s−1 ”
ξ Fraction of mobile receptors 0.85 ”

G-protein cascade

[GT ] Total number of G-protein molecules 1 × 105 Various Mahama and Linderman (1994)
kdeg IP3 degradation rate 1.25 s−1 Smooth Muscle Fink et al. (1999)

ka G-protein activation rate 0.017 s−1 See text.
kd G-protein deactivation rate 0.15 s−1 ”
[(PIP2)T] Total number of PIP2 molecules 5.0 × 104 ”
rr PIP2 replenishment rate 10, 0.1, 0.015 s−1 ”
δ G-protein intrinsic activity parameter 1.234, 1.235, 1.238 × 10−3 ”
Kc Dissociation constant for Ca2+ binding to PLC 0.4 µM ”
α Effective signal gain parameter 2.781 × 10−5 s−1 ”
ν Cell volume 5 × 10−16 m3 ”
Na Avogadro’s constant 6.02252 × 1023

Ca2+ dynamics

εr Ratio of ER to cytosolic volume 0.185 Various Wagner and Keizer (1994)
d1 IP3 channel kinetic parameter 0.13 µM ” ”
d2 ” 1.05 µM ” ”
d3 ” 0.943 µM ” ”
d5 ” 0.0823 µM ” ”
a2 ” 0.2 µM−1s−1 ” ”
[Be] Conc. of cytosolic endogeneous buffer 150 µM ” ”
Ke Cytosolic endogeneous buffer dissociation constant 10 µM ” ”
[BER] Conc. of ER endogeneous buffer 120 000 µM ” ”
KER Dissociation constant ER buffer 1200 µM ” ”
[Bx] Conc. of cytosolic exogeneous buffer 50 µM Various Swillens et al. (1998)
Kx Cytosolic exogeneous buffer dissociation constant 0.2 µM ” ”
k3 Pump dissociation constant 0.4 µM Skeletal muscle Lytton et al. (1992)
η1 Effective IP3 channel permeability 575 s−1 See text.
η2 Effective ER leak permeability 5.2 s−1 ”
η3 Effective Ca2+ pump permeability 45 µMs−1 ”
[(Ca2+)T] Total conc. of Ca2+ 67 µM ”

Equilibrium values for rrep = 10 s−1

[G]bas Basal no. of active G-protein molecules 14 See text.
[PIP2]bas Basal no. of PIP2 molecules 49997 ”
[IP3]bas Basal IP3 conc. 10 nM ”
[Ca2+]bas Basal Ca2+ conc. 96.1 nM ”
hbas Basal fraction of active IP3 channels 0.6158 ”

Table 2.1: Model parameter values.



Chapter 2: Ca2+ and IP3 dynamics 42

2.4 Discussion

Mathematical modelling has been carried out of the processes leading from agonist

stimulation of cells containing membrane metabotropic receptors, to the subsequent

Ca2+, IP3 and PIP2 response. A simplified and yet realistic model has been produced

that captures the essential elements of each part of the signal transduction process. A

quantitative account has successfully been given of the second messenger response of

single cells upon application of external ligand to metabotropic receptors.

The precise details of the mechanisms involved in metabotropic receptor activation and

desensitization depend on the receptor type (reviewed in Ferguson, 2001). For example,

the β2-adrenergic receptor (β2-AR) is phosphorylated by G-protein coupled receptor

kinases (GRKs) which preferentially bind to the agonist-bound receptor. Subsequent

binding of β-arrestins precludes interaction of the receptor with G-proteins hence caus-

ing desensitization. β-arrestin also acts as an endocytotic adaptor protein targeting

the β2-AR for internalization via clathrin coated pits. Other proteins such as the

Rab4 and Rab5 GTPases, both located in early endosomal membranes, are involved in

internalization, sorting and recycling of the β2-AR (Seachrist et al., 2000).

Less is known about the corresponding mechanisms for the P2Y2 receptor. This re-

ceptor has sites for phosphorylation by Protein Kinase C (PKC) and possible sites for

GRK phosphorylation (Garrad et al., 1998). Indeed, PKC has been shown to have

a role in P2Y2 receptor desensitization (Chen and Lin, 1999; Otero et al., 2000) but

phosphorylation by other protein kinases may be involved (Otero et al., 2000). In the

absence of definite information regarding the biochemical mechanisms for the regula-

tion of the P2Y2 receptor, the mechanisms given above for the β2-AR have been used

to construct the mathematical model. This is justified by the fact that the regulation

of the P2Y2 receptor involves the same processes given above.

The effects of internalization of ligand (for example, ligand dependent sorting in endo-

somes) have been neglected, as have also receptor degradation and insertion at the cell

surface, since these processes generally become significant only after hours of continual

application of agonist whereas the present model is only concerned with times of not

more than several tens of minutes.

Recent studies suggest the importance of the spatial localization of membrane and

cytosolic components of second messenger signalling (Golovina and Blaustein, 1997;

Haugh et al., 1998). The model presented here, while neglecting this consideration,

was found to be adequate in describing the experimental data. It is straight forward

however to generalize the model to include diffusion of subspecies, but this is beyond
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the scope of the present work.

The processes linking active metabotropic receptors to production of IP3 may comprise

more than one pathway depending on the cell type. Each pathway may comprise

different subtypes of G-protein subunits and PLC. In smooth muscle the P2Y2 receptor

activates both PLC-β1 via Gαq/11 and PLC-β3 via Gβγi3 (Murthy and Makhlouf,

1998). In Chinese hamster ovary cells, however, P2Y2 functionally couples only to

PLC-β3 (Strassheim and Williams, 2000). In the model presented here it is assumed

that there is only one pathway with one type of G-protein (Gαq/11) and PLC (PLC-β1).

All types of phospholipase C (PLC-β, PLC-γ, PLC-δ) require the presence of Ca2+ for

activation (Rebbecchi and Pentyala, 2000) . Strong activation of PIP2 hydrolysis by

Ca2+ is evident in many cell systems (Harootunian et al., 1991; Taylor et al., 1991;

Capozzi et al., 1999) but there is evidence that this is only true when PLC-δ is involved

(Allen et al., 1997). This activation is also evident in the results of Hirose et al. (1999),

to which the present model will also be applied in Chapter 3, and so Ca2+ activation

of PLC is included in the model. However, the model G-protein cascade involves only

PLC-β and so the catalytic effect of Ca2+ on PIP2 hydrolysis is assumed to be due to

activation of PLC-β by Ca2+.

Degradation of IP3 may involve a 3-kinase (Takazawa et al., 1990) or a 5-phosphatase

(Verjans et al., 1994). The 3-kinase has shown to be stimulated by Ca2+ resulting

in a Ca2+ dependent IP3 degradation rate. For the purposes of this study, however,

it is assumed that IP3 is metabolized by the Ca2+ independent 5-phosphatase which

justifies using a constant value for kdeg.

While ryanodine channels play a vital role in cardiac Ca2+ dynamics (see Section 3 of

Chapter 1), their role in metabotropic receptor pathways is less clear. Some studies

have identified interactions between the two channel types in cells (Haak et al., 2001).

However, the low ratio of ryanodine to IP3 channel density found in many cells (for

example ≈ 0.1 in intestinal smooth muscle (Wibo and Godfraind, 1994)) together

with the micromolar Ca2+ concentration required to initiate CICR means that the

contribution of CICR to global is often far smaller than that due to IICR. For this

reason, the inclusion of CICR due to the ryanodine channel has not been included in

the modelling.

A simplified yet realistic model has been chosen for the IP3 channel, a model that

has the potential to allow Ca2+ oscillations and waves (see for example De Young and

Keizer, 1992; Wagner and Keizer, 1994). The parameter values chosen here were such

that no oscillations occur for any concentration of IP3, this being consistent with the
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experimental evidence. Simulations show that both sustained and damped Ca2+ oscil-

lations are ubiquitous when the lower value for the Ca2+ pump dissociation constant,

k3 = 0.1µM representing the SERCA2 isoform, is used. That the higher value used

here, k3 = 0.4µM corresponding to the SERCA1 isoform, supresses the occurrence of

oscillations may indicate this is the dominant isoform in these cells.

Many of the rate parameter values for the chemical reactions in the detailed signal

transduction model are unknown. It has been the approach here to use, without

evidence to the contrary, the assumptions of rapid kinetics and subsaturation binding

to simplify the equations for the reactions (see Appendix A). These assumptions do not

affect the qualitative behaviour of the system as a whole but do allow each submodule in

the model to be characterized by a minimal number of free parameters. This can allow

unambiguous determination of parameter values for fitting the model to experimental

data.

The relative difference in magnitudes between the desensitization rate parameter kp

and the receptor endocytosis and recycling parameters, ke and kr respectively, has en-

sured that desensitization occurs over a faster time scale than internalization. As seen

in Fig. 2.5(b), for a step application of 1 mM UTP, the theoretical IP3 concentration

transient has a decay half time of approximately 30 seconds whereas, as shown in Fig.

2.3(a), the decay in the number of surface receptors has a half time of approximately

2.5 minutes. That desensitization occurs more rapidly than internalization appears

to be typical of the P2Y2 receptor, although the absolute rates may vary between

preparations. For example, in another experiment of the stimulation of 1321N1 cells

with UTP (Sromek and Harden, 1998) maximal accumulation of inositol phosphates

occurred with a half time of approximately 2.5 minutes, whereas the half time of the

decay of surface receptors was approximately 15 minutes. The faster rate of desensi-

tization relative to internalization is typical of other types of metabotropic receptors;

for a review see Ferguson (2001) and Bünemann et al. (1999).

In Figs. 2.6(a) and 2.6(b) both the maximum and steady-state IP3 concentration curves

are monotonic increasing and plateau at large concentrations of agonist due to receptor

saturation. For raised levels of Ca2+ and IP3 to be maintained over extended periods,

recycling of dephosphorylated receptors and resupply of membrane PIP2 are essential.

Typically in experiments cells are treated with LiCl and measurements of total inositol

phosphate (including species of phosphorylated IP3) accumulation is measured after

some fixed time. Treatment with LiCl alters the pathway of resupply of PIP2 to the

membrane and for this reason such data is not directly applicable to this model. There

is however some data available of measurements of equilibrium IP3 concentration with
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respect to ligand (Waugh et al. 1999) which confirms the qualitative form of the curves

in Fig. 2.6(b).

The theoretical time taken for IP3 concentration to peak after application of agonist

is in agreement with the 5-20 second range observed by Strøbæk et al. (1996) for

purinergic stimulation of human coronary smooth muscle cells. Experimental studies

suggest that the range of concentrations of IP3 attainable in cells is from tens of nM

to tens of µM (Horstman et al., 1988; Khodakhah et al., 1993; Luzzi et al., 1998). The

modelling in this chapter has predicted a concentration range for IP3 of 10 nM (basal)

to approximately 12 µM at saturating levels of agonist.

An important result of this study comes from the modelling of mechanisms for PIP2

depletion and resupply. Using reasonable estimates for the replenishment rate param-

eter, rr, and level of total PIP2, [(PIP2)T], the results show that the level of PIP2

depletion has a significant effect on the Ca2+ and IP3 response. For the lowest rate of

PIP2 resupply, rr = 0.015 s−1, the IP3 and Ca2+ concentrations were decreased by up

to 80% and 30% respectively, compared to the concentrations at the highest rate of

resupply, rr = 10 s−1 (see Fig 2.5(a),(b)). Depletion of PIP2 may therefore contribute

significantly to the deactivation of the signal transduction processes in cells.

Estimates of the density of PIP2 molecules in the plasma membrane are not widely

available from the literature. However, using the method explained above to determine

a likely value for [(PIP2)T], the number of PIP2 molecules turns out to be comparable

to the number of receptors and G protein molecules, [RT ] and [GT ] respectively.

The mathematical model developed in this chapter could be extended to include the

extra features discussed in Chapter 1. In the case of multiple signalling pathways

the equations need to be augmented to include the additional species involved. A

possible complication is that species of the same type will compete for binding sites

on the same target molecules, however the method described in Appendix D (used

in the modelling in Chapter 3) could be used to simplify these effects. To model

heterogeneous distributions of signalling molecules in the cell membrane or cytosol, it

may be necessary to include diffusion of these molecules in the model. The extended

model will be in the form of a boundary value problem with the inclusion of Laplacian

terms to describe the diffusion of species, that is, a set of coupled reaction-diffusion

equations. Indeed, the model for the Ca2+ dynamics, described in Section 2.3 of this

chapter has been previously extended by others to include diffusion of Ca2+ and exhibits

travelling Ca2+ wave front solutions (Jafri and Keizer, 1995). The topic of intracellular

diffusion will be returned to in Chapter 3, where the diffusion of the green fluorescent

protein-pleckstrin homology domain (GFP-PHD) molecule in the cytosol is studied,
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and also in Chapter 4 which concerns intracellular Ca2+ waves, where diffusion of Ca2+

plays an important role.

A more complete mathematical model for a single cell could be build from the model

devised in this chapter by adding the requisite components. In some applications it

may be necessary to add additional intracellular Ca2+ stores such such as mitochondria

or peripheral SR/ER. This is currently being carried out by the author to model the

Ca2+ dynamics in A7r5 rat aortal smooth muscle cells. The microstructure of these

cells, which exhibits separate central and peripheral SR compartments, has significant

implications for the Ca2+ dynamics in these cells. In other applications, modelling of

the target processes of intracellular Ca2+ release may be required such as the Ca2+

regulated contraction in myocytes which begins with the binding of Ca2+ to troponin

C in skeletal muscle or to calmodulin in smooth muscle (Somlyo and Somlyo, 1994).

Also, the single cell model could be used to build models of multicellular systems. Such

a model would comprise a set of equations for each cell, with extra terms describing

the chemical, electrical or mechanical coupling between adjacent cells, for example

leak terms to model the diffusion of IP3 through gap junctions. A multicellular model

devised in this way could be used to study agonist induced behaviour of tissue such as

contraction of blood vessels or intercellular Ca2+ waves in astrocytes (Scemes, 2000).
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Chapter 3

Modelling the dynamics of the
green fluorescent protein-pleckstrin
homology domain construct

Recent observations have been made regarding the generation of inositol 1,4,5 - trispho-

sphate (IP3), using chimeras of green fluorescent protein and the pleckstrin homology

domain of phospholipase C-δ. In this chapter a model is presented giving the quan-

titative relations between the green fluorescent protein-pleckstrin homology domain

(GFP-PHD) construct and membrane phosphatidylinositol 4,5-bisphosphate (PIP2)

levels as well as the concentration of IP3, the product of hydrolysis of PIP2. The model

can correctly reproduce the dependence of cytosolic GFP-PHD fluorescence on IP3

concentration. This model extends the one in Chapter 2 dealing with the processes

governing the production of IP3 and the subsequent calcium (Ca2+) changes in cells

following activation of metabotropic receptors. This model is applied to the case of

purinergic P2Y2 receptor activation in Madin-Darby canine kidney (MDCK) epithelial

cells with adenosine triphosphate (ATP) (Hirose et al., 1999). It is shown that it can

correctly reproduce the dependence of GFP-PHD fluorescence on the concentration

of P2Y2 receptor ligand, as well as the temporal changes of GFP-PHD fluorescence

following application of ligand.

3.1 Introduction

Calcium ions (Ca2+) are an important signalling agent for many aspects of cellular

activity (Berridge, 1997; 1998). These ions can enter cells through either voltage-gated

or receptor-activated channels in the plasmalemma, or they can be released from stores

inside the cell. A principal store is the endoplasmic reticulum and here release can occur
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through the action of Ca2+ on ryanodine receptors or through the combined action of

Ca2+ and inositol 1,4,5-trisphosphate (IP3) on IP3 receptors. It is also apparent that

IP3 plays an important role in intercellular communication through its ability to diffuse

through the gap junctions connecting cells and thus initiate Ca2+ release from internal

stores in neighbouring cells (Kostyuk and Verkhratsky, 1995; Berridge, 1993; 1998).

Much information about the action of Ca2+ has been obtained from experiments in

which it is bound to a fluorescent marker and the subsequent spatial and temporal

behaviour observed using confocal microscopy. Considerably less is known about the

behaviour of IP3, since it does not bind to fluorescent markers and thus cannot be

directly observed. However, recently a method has been developed for obtaining in-

formation via an indirect imaging technique. This method depends crucially on the

interaction between IP3, phosphatidylinositol 4,5-bisphosphate (PIP2) and a molecule

that can be tagged with a fluorescent marker. The latter is the pleckstrin homology

domain (PHD) of phospholipase C (PLC) which binds to green fluorescent protein

(GFP) to form the complex GFP-PHD. In the absence of IP3, GFP-PHD binds to

PIP2 which remains fixed in the membrane of the cell and thus the fluorescence is

concentrated there. However, GFP-PHD binds to IP3 with a much higher affinity than

to PIP2 (Lemmon et al., 1995; Ferguson et al., 1995); furthermore, the bound complex

of IP3 with GFP-PHD is mobile and can diffuse into the cytosol, causing an increase of

fluorescence there and a corresponding decrease in the membrane (Stauffer et al., 1998;

Vàrnai and Balla, 1998; Hirose et al., 1999; Nash et al., 2001). The overall conclusion

is that the spatial and temporal behaviour of IP3 is reflected in the dynamics of the

PHD and this can be observed because of the GFP tagging.

This chapter presents a mathematical model for the process of translocation of GFP-

PHD to and from the membrane in the presence of IP3. The model is formulated

as a boundary value problem, taking into account the interactions of IP3 both in the

membrane and in the cytosol and the transport between the two regions. A number of

simplifications are made, leading to equations relating fluorescence change to IP3 and

membrane PIP2 concentrations.

The experimental results of Hirose et al. (1999) are for Madin-Darby canine kidney

(MDCK) epithelial cells stimulated with adenosine triphosphate (ATP). The ATP acts

on P2Y2 receptors and initiates a G-protein cascade leading to the production of IP3.

The processes of P2Y2 receptor activation, desensitization and sequestration play an

important role in determining the time course of IP3 concentration. These processes

have been modelled in Chapter 2 and this theory will be used in conjunction with the

new theory presented here to give a unified account of the steps leading from receptor
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activation to translocation of GFP-PHD.

3.2 Methods

3.2.1 Spatial and temporal dynamics of the pleckstrin homol-
ogy domain - green fluorescent protein construct

A schematic diagram of the mechanisms involved in the GFP-PHD dynamics is shown

in Fig. 3.1. Part A of the diagram shows how IP3 competes with PIP2 for the binding

site on the GFP-PHD molecule. Part B shows that both the unbound GFP-PHD

and that bound with IP3 may dissociate and reassociate with the membrane. Also

GFP-PHD may interact with IP3 inside the cytosol.

First, the full set of equations governing the concentrations of subspecies of GFP-PHD

in the membrane and cytosol is presented. In the first instance, it is assumed that GFP-

PHD does not compete with PLC for binding with PIP2 and that the amount of PIP2

in the membrane is constant. Next, the equations are simplified using the assumptions

of rapid kinetics and of sub-saturation binding. The boundary value problem for the

cytosolic concentration of GFP-PHD is derived and a conservation condition relating

the concentrations of subspecies of GFP-PHD given. Next, the assumption is made

that the concentrations of GFP-PHD, PIP2 and IP3 are uniform across the membrane.

The conservation condition is then used to derive an expression for the relative cytosolic

fluorescence change as a function of IP3 concentration, at equilibrium. The parameters

in this equilibrium equation can be determined experimentally. An expression for the

ratio of membrane and cytosolic concentrations of GFP-PHD expressed in terms of

these parameters and valid for the fully time-dependent case is then derived and the

modifications to the theory in the case of depletion of PIP2 discussed. Finally, the

mathematical relation between cytosolic fluorescence and concentration of GFP-PHD

is described.

In Appendix D, the theory is extended to include competition of GFP-PHD with PLC

for binding with PIP2; such competition may modify the GFP-PHD dynamics as well

as the rate of hydrolysis of PIP2 by PLC. It is demonstrated how this extended theory

can be simplified so that competitive effects can be ignored.

At the end of this Methods section there is a summary that collects together the main

equations that are used in the calculations reported in this chapter.
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Figure 3.1: Schematic diagram of the GFP-PHD system. (A) IP3 competes with PIP2

for the binding site on the GFP-PHD molecule. (B) GFP-PHD combines reversibly
with IP3 both in the membrane and in the cytosol. Also, both the bound and unbound
GFP-PHD complexes can translocate between the membrane and cytosol.
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3.2.2 Mathematical model of the GFP-PHD dynamics

Consider a cell of arbitrary shape comprising an intracellular space B bounded by a

closed membrane ∂B. An arbitrary point x will be written as v (“volume”) when

it lies wholly within the cytosol and s (“surface”) when it lies on the cell membrane.

The GFP-PHD fusion construct is a protein molecule that is completely free to diffuse

through the cytoplasm of the cell (assumed to be unhindered by intracellular organelles

and membranes) but interacts with the cell membrane in a special way (see Fig. 3.2,

where ‘GFP-PHD’ has been abbreviated as ‘GP’). Each GFP-PHD molecule may bind

a single molecule of IP3. Let the cytosolic concentrations of GFP-PHD, unbound and

bound to IP3 be [GP] and [GP · IP3] respectively, these being functions of v and t and

let the surface concentrations of membrane bound GFP-PHD, unbound and bound to

IP3, be [GPM] and [GP · IP3
M] respectively, these being functions of s and t. Also

residing in the cell membrane is PIP2 which binds with GFP-PHD thereby ‘tethering’

it to the membrane; that is, after the GFP-PHD molecule is bound to PIP2 it cannot

diffuse directly back into the cytosol. Let the surface concentrations of PIP2 unbound

and bound to GFP-PHD, be [PIP2
M] and [GP·PIP2

M] respectively, these also being

functions of s and t.

Using a continuum approach to diffusion, a set of adsorption-reaction-diffusion partial

differential equations can be formulated that govern the space-time concentrations

of the above substances. In the following, the concentration of IP3 is treated as a

given function of space and time; thus [IP3] ≡ [IP3](x, t). The concentrations of the

substances [GP](v, t) and [GP ·IP3](v, t) in the cytosol satisfy the differential equations

∂[GP]

∂t
= DGP∇2[GP] − k+

1 [IP3][GP] + k−1 [GP · IP3], (3.1)

∂[GP · IP3]

∂t
= DGP∇2[GP · IP3] − k−1 [GP · IP3] + k+

1 [IP3][GP], (3.2)

where DGP is the bulk diffusion coefficient of GFP-PHD in the cytosol, assumed to be

the same whether bound or unbound to IP3 and k+
1 , k−1 are the forward and reverse

rate constants for the binding of IP3 to GFP-PHD.

The important chemical reactions occurring at each point of the membrane are de-

picted in Fig. 3.2. The species [GP] = [GP](s, t) and [GP · IP3] = [GP · IP3](s, t)

take on their concentrations at the membrane in these reactions; in addition to these

membrane kinetics, species [GP] and [GP · IP3] can diffuse throughout the cytosol. In

the model presented here, GFP-PHD is allowed to actively associate and dissociate

non-specifically with the membrane (without the need for the presence of adsorption

sites) but once within the membrane IP3 competes with PIP2 for the binding site on
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Figure 3.2: Summary of the reactions occurring in the membrane and in the cytosol
and the translocation of GFP-PHD between the two regions. The GFP-PHD molecule
is denoted by GP. The superscript M indicates membrane bound quantities. k±i , i =
1, 2, 3 and l±i , i = 1, 2 are rate constants for the indicated processes.

the GFP-PHD molecule. GFP-PHD bound to PIP2 cannot dissociate directly from the

membrane. The interaction of GFP-PHD with the membrane is described by

DGP∇[GP] · n̂ = l+1 [GP] − l−1 [GPM], (3.3)

DGP∇[GP·IP3] · n̂ = l+2 [GP · IP3] − l−2 [GP · IP3
M], (3.4)

where l+1 and l−1 are the forward and reverse membrane binding constants for GFP-

PHD unbound to IP3 and l+2 and l−2 are the binding constants for GFP-PHD bound to

IP3. ∇ is the gradient operator and n̂ is the inward pointing normal at the membrane

surface. The differential equations governing the above quantities are (the superscript

M denotes a membrane-bound quantity)

∂[GPM]

∂t
= l+1 [GP] − l−1 [GPM] − k+

2 [IP3][GPM] + k−2 [GP · PIP2
M]

−k+
3 [PIP2

M][GPM] + k−3 [GP · PIP2
M], (3.5)

∂[GP · IP3
M]

∂t
= l+2 [GP · IP3] − l−2 [GP · IP3

M]

+k+
2 [IP3][GPM] − k−2 [GP · IP3

M], (3.6)

∂[PIP2
M]

∂t
= −k+

3 [PIP2
M][GPM] + k−3 [GP · PIP2

M], (3.7)

∂[GP · PIP2
M]

∂t
= k+

3 [PIP2
M][GPM] − k−3 [GP · PIP2

M]. (3.8)

3.2.3 Reductions and simplifications of the mathematical model

Eqns (3.1)-(3.8), together with initial conditions and given IP3 concentration function

[IP3](x, t), define a well-posed boundary value problem. These will now be simplified

in order to derive an algebraic relation between the concentrations of membrane and

cytosolic GFP-PHD, leading to a boundary value problem in terms of the total concen-

tration of GFP-PHD instead of a system of equations relating the different fractions.
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First, adding eqns (3.7) and (3.8) gives

∂

∂t
([PIP2

M] + [GP · PIP2
M]) = 0,

which implies

[PIP2
M] + [GP · PIP2

M] = [PIP2], (3.9)

where [PIP2] ≡ [PIP2](s) is the total surface concentration of PIP2, this being a measure

of the maximum adsorptive capacity of the membrane for GFP-PHD. Eqn (3.9) can

now be used to eliminate eqn (3.7) and species [PIP2
M], leading to the replacement of

eqns (3.5) and (3.8) by

∂[GPM]

∂t
= l+1 [GP] − l−1 [GPM] − k+

2 [IP3][GPM] + k−2 [GP · IP3
M]

−k+
3 ([PIP2] − [GP · PIP2

M])[GPM] + k−3 [GP · PIP2
M] (3.10)

and

∂[GP · PIP2
M]

∂t
= k+

3 ([PIP2] − [GP · PIP2
M])[GPM] − k−3 [GP · PIP2

M]. (3.11)

Further reduction is possible if it is assumed the reaction kinetics for IP3 and GFP-

PHD (both in the cytosol and on the membrane) are rapid relative to the time scales of

the diffusion of GFP-PHD and changes in IP3 concentration. Using this assumption,

to a first order approximation (see Appendix C for details)

[IP3][GP] −KG1[GP · IP3] = 0, (3.12)

[IP3][GPM] −KG2[GP · IP3
M] = 0, (3.13)

−l+1 [GP] + l−1 [GPM] + l−2 [GP · IP3
M] − l+2 [GP · IP3] = 0, (3.14)

([PIP2] − [GP · PIP2
M])[GPM] −KG3[GP · PIP2

M] = 0, (3.15)

where KG1 = k−1 /k
+
1 , KG2 = k−2 /k

+
2 and KG3 = k−3 /k

+
3 . In these equations, [GP], [GP·

IP3] and [IP3] take on their values at the membrane. At time t, let [(GP)mem] be the

total concentration of GFP-PHD at the point s in the membrane and let [(GP)cyt]

be the total concentration of GFP-PHD in a thin layer of the cytosol adjacent to the

membrane. Hence

[(GP)cyt] = [GP] + [GP · IP3], (3.16)

[(GP)mem] = [GPM] + [GP · IP3
M] + [GP · PIP2

M]. (3.17)

From eqn (3.15), [GP · PIP2
M] = [GPM][PIP2]/(KG3 +[GPM]) which together with eqn

(3.13) gives

[(GP)mem] = [GPM]

(
1 +

[IP3]

KG2
+

[PIP2]

KG3 + [GPM]

)
. (3.18)
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Similarly eqns (3.12)-(3.14) and (3.16) give

(
KG1l

+
1 + l+2

KG1 + [IP3]

)
[(GP)cyt] =

(
l−1 +

l−2 [IP3]

KG1

)
[GPM]. (3.19)

Eliminating [GPM] from eqns (3.18) and (3.19) gives a relation of the form

[(GP)mem] = g([IP3], [PIP2], [(GP)cyt]). (3.20)

Instead of immediately solving explicitly for the function g in eqn (3.20), some simpli-

fications will first be made to eqns (3.18) and (3.19). It will be assumed that l+1 = l+2 ,

l−1 = l−2 , k+
1 = k+

2 and k−1 = k−2 ; this implies that in the absence of PIP2 the ratio

of the concentrations of membrane and cytosolic GFP-PHD does not depend on the

concentration of IP3. Hence KG1 = KG2 = KG and eqn (3.19) reduces to

[GPM] =
1

L

KG

KG + [IP3]
[(GP)cyt], (3.21)

where L = L1 = l−1 /l
+
1 = l−2 /l

+
2 = L2. The final simplification is to assume that

the amount of GFP-PHD bound by PIP2 is far below saturation. This is consistent

with the conclusion of Hirose et al.(1999) that the amount of free PIP2 remains either

constant or much greater than the dissociation constant for PIP2 binding to GFP-PHD.

Formally, this condition means [GPM] � KG3 and thus eqn (3.18) simplifies to

[(GP)mem] = [GPM]

(
1 +

[IP3]

KG
+

[PIP2]

KG3

)
. (3.22)

The assumption that GFP-PHD combined with PIP2 is far below saturation ensures

that GFP-PHD does not affect the hydrolysis of PIP2 by PLC and that there is no

need to account for competition between GFP-PHD and PLC for PIP2 binding sites.

These assertions are proved in Appendix D.

Eliminating [GPM] from eqns (3.21) and (3.22) is now straightforward and the following

linear relation between [(GP)mem] and [(GP)cyt] is obtained:

[(GP)mem]

[(GP)cyt]
= f([IP3], [PIP2]) =

1

L

(
1 +

[PIP2]KG

KG3(KG + [IP3])

)
. (3.23)

For the case of fast membrane kinetics, as discussed in Appendix C, eqn (3.19) is

replaced with

[GPM] =
KG2

L1KG2 + [IP3]L2
[(GP)cyt], (3.24)

but making the assumption that L1 = L2 = L and KG1 = KG2 = KG gives an equation

identical to eqn (3.21).
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3.2.4 The simplified equations of the GFP-PHD dynamics

Using eqns (3.1)-(3.8), it can be shown that

∂

∂t
([GP] + [GP · IP3]) = DGP∇2([GP] + [GP · IP3]), x ∈ B, (3.25)

DGP∇([GP] + [GP · IP3]) · n̂ =
∂

∂t
([GPM] + [GP · IP3

M]

+ [GP · PIP2
M]), x ∈ ∂B, (3.26)

and using the definitions of eqns (3.16), (3.17) and (3.20) the reduced problem governing

the adsorption-diffusion of GFP-PHD is given by

∂[(GP)cyt]

∂t
= DGP∇2[(GP)cyt], x ∈ B, (3.27)

DGP∇[(GP)cyt] · n̂ =
∂

∂t
g([IP3], [PIP2], [(GP)cyt]), x ∈ ∂B. (3.28)

A useful equation is the conservation condition for the total amount of GFP-PHD in

the cell. This is obtained as the sum of the integrals of [(GP)cyt] through the cytosol

and [(GP)mem] over the cell membrane. The result is

∫∫∫

B

[(GP)cyt] dV +

∫∫∫

∂B

g([IP3], [PIP2], [(GP)cyt]) dS = [GPT], (3.29)

where [GPT], the total amount of GFP-PHD, is constant in time. For the case of

linear adsorption the integrand g([IP3], [PIP2], [(GP)cyt]) in eqn (3.29) is replaced with

f([IP3], [PIP2])[(GP)cyt], defined by eqn (3.23).

3.2.5 The case of uniform membrane species distributions

It will now be assumed that the surface concentrations of GFP-PHD, PIP2 and the

concentration of IP3 are spatially homogeneous across the membrane. In the first

instance it is assumed that the time variation of IP3 concentration is sufficiently slow

that the concentration of GFP-PHD can be considered to be uniform throughout the

cytosol. Substituting eqn (3.23) into the conservation relation, eqn (3.29), and carrying

out the integrations for a cell of surface area S and volume V gives

[(GP)cyt] = [(GPT)cyt]

[
1 +

1

γL

(
1 +

[PIP2]KG

KG3(KG + [IP3])

)]−1

, (3.30)

where γ = V/S and [(GPT)cyt] = [GPT]/V is the total GFP-PHD concentration in

terms of the cytosolic volume.
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Assuming that the fluorescence intensity of GFP-PHD in the cytosol, F , is proportional

to the concentration of GFP-PHD in the cytosol, [(GP)cyt], that is,

F = A0[(GP)cyt], (3.31)

where A0 is a constant, then eqn (3.30) can be used to deduce that the relative change

in fluorescence at equilibrium is of the form

∆F/F0 = A1

(
[IP3] − [IP3]bas

A2 + [IP3]

)
, (3.32)

where A1 is a constant, [IP3]bas is the basal concentration of IP3 (the concentration

prior to application of agonist), F0 is the corresponding fluorescence and

A2 = K

(
1 +

[PIP2]

KG3(γL+ 1)

)
. (3.33)

As described in the results section, eqn (3.32) can used in conjunction with experimen-

tal data under conditions of spatially uniform GFP-PHD, PIP2 and IP3 concentrations,

to determine A2. It will now be shown how A2 together with the parameters KG and γ

completely determine the function g() in eqn (3.28), thereby allowing simulation of the

time-dependent dynamics of GFP-PHD. If the parameters A2, KG and γ are known,

another equation is needed to supplement eqn (3.33) in order to determine both pa-

rameters [PIP2]/KG3 and L. However, this need can be circumvented by invoking a

limiting case of the parameter values. At very large concentrations of IP3 it is reason-

able to assume that the mass of GFP-PHD in the membrane is negligible compared to

the mass of GFP-PHD in the cytosol. The ratio of these masses is, from eqn (3.23),

mmem

mcyt
=

1

γL

(
1 +

[PIP2]KG

KG3(KG + [IP3])

)
. (3.34)

Letting [IP3] → ∞ in eqn (3.34) shows that the previous assumption requires 1/γL�
1; writing 1/γL = δ and solving eqn (3.33) for [PIP2]/KG3 in terms of δ gives

[PIP2]

KG3
=

(
A2

KG
− 1

)(
1

δ
+ 1

)
(3.35)

and hence eqn (3.23) becomes

[(GP)mem]

[(GP)cyt]
= γδ

[
1 +

(
A2

KG

− 1

)(
1

δ
+ 1

)(
KG

KG + [IP3]

)]
. (3.36)

Taking the limit δ → 0 in eqn (3.36) gives

g([IP3], [PIP2], [(GP)cyt]) = f([IP3], [PIP2])[(GP)cyt] =
γKG

KG + [IP3]

(
A2

KG
− 1

)
[(GP)cyt].

(3.37)
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3.2.6 GFP-PHD translocation due to PIP2 depletion

Strictly, the PIP2 concentration [PIP2] is a function of time since it is depleted by

G-protein coupled receptor activity and subsequently replenished. Lowering [PIP2],

for example, reduces the concentration of adsorption sites for GFP-PHD on the mem-

brane and hence induces translocation of GFP-PHD to the cytosol; it has been found

experimentally that this translocation can be significant (Vàrnai and Balla, 1998). If

the amount of PIP2 is altered by other processes occurring in the cell, the right hand

sides of eqns (3.7) and (3.8) will include extra terms. Provided that these terms are

independent of the GFP-PHD kinetics, the rest of the derivation is still valid but with

[PIP2] = [PIP2](s, t). Competitive binding between GFP-PHD and PLC for PIP2 is

one way in which changes in PIP2 levels may affect the GFP-PHD kinetics. How-

ever, in Appendix D it is shown that if both the levels of GFP-PHD and PLC do not

saturate PIP2, competitive effects can be ignored. Hence from eqn (3.35), A2 is now

time-dependent and taking the ratio of this equation for two different values of [PIP2]

gives
[PIP2]

[PIP2]bas
=

A2 −KG

A2,bas −KG

and hence

A2 =

(
[PIP2]

[PIP2]bas

)
(A2,bas −KG) +KG, (3.38)

where [PIP2]bas and A2,bas are the values of [PIP2] and A2 at basal IP3 concentration.

This expression for A2 should now be used in eqns (3.32) and (3.37). Because PIP2

is assumed to be spatially homogeneous in the membrane, the surface concentration

[PIP2] in eqn (3.38) can be substituted for [PIP2] defined as the number of molecules

of PIP2 as in Chapter 2 (see Table 3.1).

3.2.7 Relation between GFP-PHD concentration and fluores-
cence

It follows from eqn (3.31) that

∆F/F0 = A3 ([(GP)cyt] − [(GP)cyt]bas) , (3.39)

where [(GP)cyt]bas is the cytosolic concentration of GFP-PHD for basal IP3 concentra-

tion and A3 is a constant. The conservation condition for GFP-PHD in equilibrium

is

[(GP)mem]bas + γ[(GP)cyt]bas = γ[(GPT)cyt], (3.40)

where [(GP)mem]bas is the surface concentration of GFP-PHD in the presence of basal

IP3. Since f([IP3], [PIP2]) → 0 as [IP3] → ∞, [(GPT)cyt] is also the concentration
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of GFP-PHD in the cytosol at high concentration of IP3. Assuming the case of lin-

ear adsorption, eqn (3.37) relates [(GP)mem]bas and [(GP)cyt]bas and hence solving for

[(GPT)cyt] gives

[(GPT)cyt] = [(GP)cyt]bas

(
f([IP3]bas, [PIP2]bas)

γ
+ 1

)
. (3.41)

Substituting eqn (3.41) into the limiting case of eqn (3.39) for large IP3 gives an

equation for A3,

A3 =
A1

[(GPT)cyt] − [(GP)cyt]bas

. (3.42)

3.2.8 Approximate solution of the GFP-PHD equations

If the changes in the concentration of IP3 and the amount of PIP2 occur over a much

longer time scale than than does the diffusion of GFP-PHD, an expression for an

approximate solution of the GFP-PHD equations can be derived. This derivation is

given in Appendix E for the case of a cylinder where the adsorption characteristic

f([IP3], [PIP2]) is uniform around the perimeter of the cell. The result is given by eqn

(E.15) and averaging this over the cell volume gives

[(GP)cyt]av =
γ[(GPT)cyt]

γ + f(t)
+
γa2[(GPT)cyt]f(t)f ′(t)

8DGP [γ + f(t)]3
+ O(ε2), (3.43)

where f(t) = f([IP3](t), [PIP2](t)), a is the radius of the cell and ε is a small parameter

measuring the ratio of the timescales of diffusion and changes in IP3 and PIP2. The

maximum concentration of GFP-PHD, [(GPT)cyt], is given by eqn (3.41).

3.2.9 Mathematical model for metabotropic receptor activa-
tion, desensitization and sequestration

This chapter also utilises the mathematical model for metabotropic receptor activation,

desensitization and sequestration developed previously in Chapter 2. In that chapter

the model is defined by the equations for receptor regulation, eqns (2.13) and (2.14);

the equations for the G-protein cascade, eqns (2.23) and (2.27); and the equations for

the Ca2+ dynamics, eqns (2.28) and (2.29). Also included are the initial conditions,

eqn (2.40) and ligand stimulus, eqn (2.38). The parameter values that differ from those

used in Chapter 2 are listed in Table 3.1. Details of how these parameter values were

selected are provided below.

This model is used to theoretically predict the transients in IP3, Ca2+ and PIP2 in the

cell. The IP3 concentration and amount of PIP2, assumed to be spatially homogeneous
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in the cytoplasm and membrane respectively, are then used as an inputs in the GFP-

PHD model.

3.2.10 Summary

The above theory, combined with that of Chapter 2, enables calculation of the fluo-

rescence changes that occur when IP3 causes the displacement of GFP-PHD from the

membrane into the cytosol of a cell. This process is initiated by application of a ligand

to metabotropic receptors on the cell surface, leading to changes in the concentrations

of IP3 and PIP2; specifically, the time courses of these concentrations can be calculated

using eqns (2.13),(2.14), (2.23)-(2.29) and (2.40).

The equations given in this chapter can then be used to calculate the resulting GFP-

PHD fluorescence change. In the equilibrium case, the relevant equation is eqn (3.32),

∆F/F0 = A1

(
[IP3] − [IP3]bas

A2 + [IP3]

)
,

where (eqn (3.38))

A2 =

(
[PIP2]

[PIP2]bas

)
(A2,bas −KG) +KG.

The subscript ‘bas’ specifies values taken when IP3 has its basal concentration, that

is, in the absence of activation of the metabotropic receptors. A1, A2,bas and KG are

constants whose values are given in Table 3.1.

In the non-equilibrium case, the fluorescence change at an arbitrary point in the cell is

given by eqn (3.39),

∆F/F0 = A3 ([(GP)cyt] − [(GP)cyt]bas) ,

where [(GP)cyt], the concentration of GFP-PHD at a point x and time t, is found by

solving eqns (3.27) and (3.28),

∂[(GP)cyt]

∂t
= DGP∇2[(GP)cyt], x ∈ B,

DGP∇[(GP)cyt] · n̂ =
∂

∂t
g([IP3], [PIP2], [(GP)cyt]), x ∈ ∂B,

for some specific cell geometry consisting of a volume B surrounded by a membrane

∂B. The function g() is given by eqn (3.37),

g([IP3], [PIP2], [(GP)cyt]) = f([IP3], [PIP2])[(GP)cyt] =
γKG

KG + [IP3]

(
A2

KG
− 1

)
[(GP)cyt],

where γ is the ratio of surface area to volume. An approximate solution for [(GP)cyt]

for the case of a cylindrical cell is given by eqn (3.43).
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3.3 Results

3.3.1 Model predictions for desensitization based on fluores-

cence data

Figure 3.3 shows the experimental and theoretical equilibrium relative change in flu-

orescence, ∆F/F0, as a function of IP3 concentration. The points are experimental

data taken from Fig. 2D of Hirose et al. (1999) where MDCK cells were injected with

IP3. The solid curve is a plot of eqn (3.32) where the (unstimulated) cell being injected

is assumed to have a fixed basal level of PIP2, hence A2 = A2,bas. The values of A1 and

A2,bas (see Table 3.1) were determined from a least squares fit to the experimental data

using the MATLAB function lsqcurvefit. It is assumed that these parameters remain

valid for the agonist stimulated cells. The basal IP3 concentration, [IP3]bas = 10 nM,

used in eqn (3.32), being much smaller than the range of IP3 concentration used in the

experiments, does not significantly affect the values of A1 and A2,bas.

The time courses of relative fluorescence change in response to an application of 3 µM

of ATP is shown in Fig. 3.4. The solid and dashed curves are theoretical transients

obtained by solving eqns (2.13),(2.14) and (2.23)-(2.29) with initial conditions eqn

(2.40) and ligand stimulus eqn (2.38). The parameter values used are listed in Table

3.1 and rr = 10 s−1. ∆F/F0 was computed from the theoretical transients in IP3

and PIP2, using eqns (3.32) and (3.38). The data points in this figure are taken from

Hirose et al. (1999), Fig. 3B (black curve, no Ca2+ influx) and show the results of an

experiment on permeabilized cells. Permeabilization of the plasma membrane allows

the control of the cytosolic Ca2+ concentration by manipulation of the external Ca2+

concentration. It is assumed that the normal mechanisms of Ca2+ regulation (in this

case the IP3 channels, pumps and leak) are inhibited and have no affect on cytosolic

Ca2+ concentration. It is also assumed that permeabilization has no affect on any of

the signal transduction mechanisms in the cell membrane. The solid curve in Fig. 3.4

shows the theoretical transient in ∆F/F0 for the case where the Ca2+ concentration

has been held at a constant value of 50 nM, this value being taken from the dashed

black line in Hirose et al. (1999), Fig. 3B. The dashed line in Fig. 3.4 indicates

the corresponding result for non-permeabilized cells where the full Ca2+ dynamics are

included. The larger peak in ∆F/F0 and hence larger peak in IP3 concentration for

the non-permeabilized cell case is due to the increased activation of PLC by the higher

(basal and peak) concentration of Ca2+.

In Fig. 3.5 the case where the diffusion of GFP-PHD is assumed to be instantaneous

is compared to cases where GFP-PHD has a finite diffusion rate, for cylindrical and
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Figure 3.3: The equilibrium relative change in fluorescence as a function of IP3 concen-
tration in a single cell. The points show experimental values taken from Hirose et al.

(1999), Fig. 2D. The theoretical curve was calculated using eqn (3.32) with the values
of A1 and A2,bas given in Table 3.1, this latter choice giving the least squares fit of eqn
(3.32) to the experimental data.
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Figure 3.4: The time course of experimental and theoretical fluorescence data. The
solid line shows the theoretical results for the case of permeabilized cells and was
produced using the theory given in Chapter 2. Specifically, eqns (2.13),(2.14), (2.23)-
(2.29) with initial conditions eqn (2.40) and ligand stimulus eqn (2.38) were used from
that chapter, but with parameter values taken from Table 3.1 except that the Ca2+

concentration is kept constant at 50 nM. The points show the experimental data taken
from Hirose et al. (1999), Fig. 3B. The dashed curve is the theoretical result for the case
of non-permeabilized cells, where the equations for the Ca2+ dynamics are included,
namely eqns (2.28)-(2.29).
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Figure 3.5: Theoretical relative fluoresence changes with respect to time for the first
5 seconds after a step application of 3 µM ATP at t = 0. In each panel, the case
where diffusion of GFP-PHD is taken to be instantaneous is compared with cases of
finite diffusion rates. The time course of IP3 concentration was determined for the non-
permeabilized case by solving the equations from Chapter 2 as described previously.
For the instantaneous case, ∆F/F0 was computed from [IP3] using eqn (3.32) (solid
curve with crosses in (a), (b) and (c)). In (a) this is compared with the cases of a
cylinder of radius 5 µm and a sphere of the same volume where ∆F/F0 is determined
by averaging over the volume of the cell. The dashed line is a plot of averaged ∆F/F0

based on the approximate solution of the GFP-PHD equations for a cylinder, defined
by eqn (3.43). (b) shows the theoretical average of ∆F/F0 and values of ∆F/F0 at
various radial positions, r, within the cylindrical cell. (c) shows the average values of
∆F/F0 for the spherical cell where different values of DGP have been used.
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spherical cells. The IP3 concentration and amount of PIP2 were computed for the case

of non-permeabilized cells as described above, again with rr = 10 s−1, for the first 5

seconds after a step application of 3 µM ATP at t = 0. For the instantaneous case,

∆F/F0 was computed from the time course of [IP3] and [PIP2] directly using eqns

(3.32) and (3.38). For the cylindrical and spherical cells the cytosolic concentration of

GFP-PHD was determined by solving eqns (3.27) and (3.28) with an initially uniform

concentration, [(GP)cyt]bas, and with linear adsorption, defined by eqn (3.37). The

equations for the cases of finite diffusion rates were solved using the method of lines

(see pp. 302-304 of Ames, 1977) in cylindrical coordinates and spherical coordinates,

with 50 radial space divisions. The resulting GFP-PHD concentration, [(GP)cyt], was

then used to compute the time courses of ∆F/F0 at specific points within the cell

using eqn (3.39) and these transients were also averaged through the cell volume to

obtain the transient of the average value of ∆F/F0 for the whole cell.

In Fig. 3.5(a) the resulting time courses of ∆F/F0 are shown for the instantaneous

case together with the average ∆F/F0 for the cylindrical and spherical cell cases for

DGP = 1 × 10−11 m2s−1. ∆F/F0 for the cylinder and sphere lags behind that for

the instantaneous case because of the delay incurred by GFP-PHD in diffusing from

the membrane towards the centre of the cell. The larger radius for the spherical cell

means that this diffusive delay is longer. Also shown in Fig. 3.5(a) is a plot of the

averaged ∆F/F0 in a cylinder computed using the first two terms of the approximate

solution for the average GFP-PHD concentration, [(GP)cyt]av, defined by eqn (3.43).

In eqn (3.43), f(t) and f ′(t) were calculated using the numerical solutions of [IP3] and

[PIP2]. ∆F/F0 is evaluated from [(GP)cyt]av using eqn (3.39). The close agreement

between the approximate solution for ∆F/F0 and that determined by the method of

lines confirms the validity of the approximate method given in Appendix E. In Fig.

3.5(b) the time course of ∆F/F0 for the instantaneous case is shown together with

the averaged and localized time courses of ∆F/F0 for the cylindrical cell case. The

localized values of ∆F/F0 within the cell were computed from eqn (3.39) using the

values of [(GP)cyt] at the radial positions r = 0 (centre), r = 2.5 µm and r = 5 µm

(membrane). Note that the diffusive delay increases towards the centre of the cell. In

Fig. 3.5(c) the time course of ∆F/F0 for the instantaneous case is shown together with

the averaged time course of ∆F/F0 for the spherical cell case, for a range of values of

the GFP-PHD diffusion coefficient (DGP = 1 × 10−12, 1 × 10−11, 1 × 10−10 m2s−1).

Lowering the diffusion coefficient of GFP-PHD increases the lag of the ∆F/F0 curves

behind that of the instantaneous curve. This diffusive delay can be quantified if the

rate of change of IP3 can be considered to be constant over a much longer time scale

than the characteristic diffusion time scale, a2/DGP, where a is the radius of the cell.
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In this case, over a sufficiently short time frame the flux of GFP-PHD to or from the

membrane can be considered to be constant. The concentration of GFP-PHD will

thus ramp linearly with time throughout the cell but be delayed behind the membrane

by an amount (a2 − r2)/(4DGP) at points distant r from the centre for a cylinder

(see page 203 of Carslaw and Jaeger, 1946) and (a2 − r2)/(6DGP) for a sphere. In

Appendix E, eqns (3.27) and (3.28) are solved approximately using the assumption

of separation of time scales, and the diffusive delay factors given above are formally

derived. Averaging these delays over the cell volume gives the delay of the average

∆F/F0 behind the membrane of a2/(8DGP) and a2/(15DGP) for the cylinder and

sphere respectively. These results can be verified by inspection of the curves in Fig.

3.5.

Figure 3.6 shows the theoretical IP3 concentrations resulting from the application of

different concentrations of ATP, with (a) giving the peak value and (b) giving the

steady-state value. These curves were obtained by solving the equations of the signal

transduction theory given in Chapter 2, that is eqns (2.13),(2.14) and (2.23)-(2.29) with

initial conditions eqn (2.40) and ligand stimulus eqn (2.38), but with parameter values

taken from Table 3.1. Results for two different replenishment rate parameters, rr, are

shown. The error bars represent experimental data converted from maximum relative

change in fluorescence data taken from Fig. 2B of Hirose et al. (1999). The conversion

was performed by rearranging eqn (3.32) to give [IP3] as a function of ∆F/F0 and

applying it to the experimental data in that figure. In the conversion, PIP2 depletion

is ignored so A2 has the constant value of A2,bas.

Figure 3.7 shows the peak relative fluorescence change with respect to ligand concen-

tration. The same procedure for solving the model equations was used as for Fig. 3.6

but with ∆F/F0 computed again using eqn (3.32) with eqn (3.38) used to calculate

A2. The solid line shows the result for the PIP2 replenishment parameter rr = 10 s−1

whereas the dashed line shows the result for rr = 0.015 s−1. Both curves are consistent

with the experimental data. The lower value of rr leads to a lower peak IP3 concentra-

tion as described above, and hence a smaller peak value of ∆F/F0 however, this drop

in ∆F/F0 is offset by increased translocation of GFP-PHD due to PIP2 depletion.
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Figure 3.6: Peak (a) and steady-state (b) IP3 concentrations as functions of ligand
(ATP) concentration. The theoretical curves were produced using the theory given in
Chapter 2 - specifically, eqns (2.13),(2.14) and (2.23)-(2.29) with initial conditions eqn
(2.40) and ligand stimulus eqn (2.38) of that chapter, but with parameter values taken
from Table 3.1. Results for two different rates of PIP2 replenishment, rr = 10 s−1 and
rr = 0.015 s−1 are shown. The points with error bars in (a) are experimental data
converted from Fig. 2B of Hirose et al. (1999) (see text).
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Figure 3.7: Experimental and theoretical maximum change in relative fluorescence as
functions of applied ligand (ATP) concentration. The theoretical time course of IP3

and PIP2 was calculated using the same procedure as for Fig. 3.6. The corresponding
value of ∆F/F0 at each time step was computed using eqn (3.32), the maximum
value over the whole time course being determined for each step application of ligand.
The points with error bars show the experimental data taken from Fig. 2B of Hirose
et al. (1999). Results for two different rates of PIP2 replenishment, rr = 10 s−1 and
rr = 0.015 s−1, are shown.
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3.3.2 Parameter value selection

The parameter values for the model equations presented in Chapter 2, chosen for the

case of MDCK cells, as well as the parameter values for the GFP-PHD dynamics are

listed in Table 3.1. Only those parameter values that differ from those given in Table

2.1 are listed.

For the MDCK cell a diameter of 10 µm and a volume of 8 × 10−15 m3 were chosen

based on the images of the cells in Fig. 4 of Hirose et al. (1999). The diameter of the

spherical cell, approximately 21.22 µm, was chosen so as to have the same volume as

the cylindrical cell. This ensures that, with all the other signal transduction parameters

the same, both types of cell will have the same second messenger response under the

same stimulus conditions.

The numerical value of the parameter A3 appearing in eqn (3.39) was computed from

the values of [(GP)cyt], [IP3]bas and γ provided in Table 3.1 hence eqn (3.39) becomes

∆F/F0 = 2348.8×
(
[(GP)cyt] − 2 × 10−6

)
for both the cylindrical and spherical cells.

The values used for the GFP-PHD diffusion coefficient (DGP = 1 × 10−12, 1 ×
10−11, 1× 10−10 m2s−1) were chosen to give a broad range of possible values and were

chosen to be inclusive of results quoted by Dayel et al. (1999) for the bulk diffusion

coefficient of the isolated GFP in the cytoplasm of CHO cells.

A definite value for K1 is not available but a larger value of K1 than that used in

Chapter 2 is required for curve fitting in Figs. 3.4 and 3.7 (note that dissociation

constants for different ligands can differ markedly for the same type of receptor). The

ratio K1/K2 was kept the same as in Chapter 2. The values of kr and ke were adjusted

from those used in Chapter 2 so that the steady-state IP3 concentration at saturating

levels of ligand matches that predicted in that chapter, approximately 60 nM.

The value of [GT ] was selected to give a basal level of activated G-protein, [G]bas,

similar to that in Chapter 2. The value of [PIP2]bas was chosen to be sufficiently large

to give minimal depletion of PIP2 for both values of rr, consistent with the conclusion

of Hirose et al. (1999) that the amount of free PIP2 remains either constant or much

greater than the dissociation constant for PIP2 binding with GFP-PHD.

As in Chapter 2, the numerical values of the parameters η1, η2, η3 and [Ca2+]bas

were chosen to give the desired Ca2+ transient characteristics. As before the desired

basal Ca2+ concentration was approximately 100 nM (taken from Fig. 3A of Hirose

et al., 1999) but here the maximum desired Ca2+ change was approximately 400 nM

(estimated again from Fig. 3A of Hirose et al., 1999).
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The values of α and Kc were determined by simultaneously obtaining a best fit for the

theoretical curve to the experimental data in Fig. 3.7 while obtaining a fit for the peak

of the theoretical curve to the data for the permeabilized cell case in Fig. 3.4. For this

same curve, the value of kp was chosen to fit the decaying part of the experimental

data and the GTP-ase rate parameter kd was chosen so that the curve fits the rising

phase of the data.
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Symbol Definition Value Notes

GFP-PHD dynamics

KG Dissociation constant for IP3 binding to GFP-PHD 93 nM Hirose et al. (1999)
[(GP)cyt]bas Basal conc. of GFP-PHD 2 µM ”
DGP Diffusion coefficient of GFP-PHD 10−12, 10−11 , 10−10 m2s−1 See text.
A1 Empirically determined parameter in eqn (3.32) 0.9767 ”
A2,bas ” (for basal PIP2 levels) 21.52 µM ”

A3 Empirically determined parameter in eqn (3.39) 2348.8 M−1 ”

Receptor regulation

K1 Unphosphorylated receptor dissociation constant 500 µM See text.
K2 Phosphorylated receptor dissociation constant 0.01 M ”
kr Receptor recycling rate 5.83 × 10−5 s−1 ”
kp Receptor phosphorylation rate 0.85 s−1 ”
[RT ], ke, ξ see Table 2.1

G protein cascade

[GT ] Total number of G-protein molecules 1 × 107 See text.
ka G-protein activation rate 0.017 s−1 ”
kd G-protein deactivation rate 0.15 s−1 ”
[(PIP2)T] Total number of PIP2 molecules 5.0 × 107 ”

rr PIP2 replenishment rate 10, 0.015 s−1 ”
δ G-protein intrinsic activity parameter 1.385, 1.385 × 10−5 ”
Kc Dissociation constant for Ca2+ binding to PLC 0.4 µM ”
α Effective signal gain parameter 3.847 × 10−7 s−1 ”
ν Cell volume 8 × 10−15 m3 ”
kdeg , Na see Table 2.1

Ca2+ dynamics

η1 Effective IP3 channel permeability 133 s−1 See text.
η2 Effective ER leak permeability 2.72 s−1 ”
η3 Effective Ca2+ pump permeability 45 µMs−1 ”
[(Ca2+)T] Total conc. of Ca2+ 1 mM ”
εr, d1, d2, d3, d5, a2

[Be], Ke, [Bx], Kx

[BER], KER, k3 see Table 2.1

Equilibrium values for rr = 10 s−1

[G]bas Basal no. of active G-protein molecules 16 See text.
[PIP2]bas Basal no. of PIP2 molecules 4999995 ”
[IP3]bas Basal IP3 conc. 10 nM ”
[Ca2+]bas Basal Ca2+ conc. 100.4 nM ”
hbas Basal fraction of active IP3 channels 0.6055 ”

Table 3.1: Model parameter values.
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Discussion

In this chapter a mathematical model has been developed for the translocation of

GFP-PHD between the membrane and cytosol of a cell in the presence of IP3. The

model has been successfully used in conjunction with a model for metabotropic receptor

activation, desensitization and sequestration (Chapter 2) to quantify experimental data

for the purinergic stimulation of MDCK cells.

A central result of the present work is the formal derivation of an expression for the

relative fluoresence change (∆F/F0) as a function of IP3 under equilibrium conditions

(eqn (3.32)). This formula, with parameters determined experimentally, was then

used to quantify IP3 concentrations for other experimental data (so as to determine

parameters in the signal transduction model). Using this procedure it was deduced

that the maximum IP3 concentration in these cells reached hundreds of µM. This is

credible given the evidence suggesting that IP3 concentration can reach tens of µM in

some cells (Horstman et al., 1988; Khodakhah et al., 1993; Luzzi et al., 1998).

There are several assumptions and considerations that need to be examined carefully

if one wishes to use this mathematical model of the dynamics of the GFP-PHD for

comparison with the results of experimental work. One assumption, used for sim-

plifying the model equations, is that the concentrations of GFP-PHD, PIP2 and IP3

are uniform around the perimeter of the cell. However, a heterogeneous distribution

of membrane components such as receptor patches which can occur in cells expressing

P2Y2 receptors (Sromek and Harden, 1998) or PIP2 (Pike and Casey, 1996) would cause

spatially-dependent generation of IP3. In these cases, there would be non-uniform rates

of GFP-PHD translocation across the membrane and there is evidence of this in Fig.

4 of Hirose et al. (1999). The equations for the dynamics of the GFP-PHD at a point

on the membrane (eqns (3.27) and (3.28)) are still valid in these cases.

Depletion of PIP2 levels also causes translocation of GFP-PHD into the cytosol. In this

study the level of PIP2 and its rate of resupply have been chosen to give low depletion

of PIP2 during agonist stimulation, consistent with the experimental evidence. PIP2

depletion may be significant in some cells to which the GFP-PHD probe technique has

been applied (Vàrnai and Balla, 1998), in which case this technique would have to be

used in conjunction with some method of monitoring PIP2 levels. Fluorescent-labeled

neomycin has been suggested as a probe for PIP2 levels in membranes (Arbuzova et

al., 2000).

The assumption of rapid binding of IP3 and PIP2 with GFP-PHD allows the full

equations (eqns (3.1)-(3.8)) to be simplified to a single equation describing the diffusion
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of GFP-PHD (eqn (3.27)) and a boundary condition (eqn (3.28)). Some experimental

credence for this assumption can be found in the paper by Hirose et al. (1999). There,

changes in cytosolic and membrane fluorescence for the case of Ca2+ waves (see their

Fig. 4) are observed to lag the corresponding Ca2+ concentration changes by an amount

in the order of seconds. This is consistent with the model predictions described in the

results section.

The method of imaging IP3 using GFP-PHD is quite unlike conventional Ca2+ indica-

tors. The latter indicate local Ca2+ in the cytoplasm and their fluorescence properties

are changed by the binding of Ca2+; for example, for fura-2 there is a shift in the

absorption spectra to a shorter wavelength. In contrast, changes in the fluorescence

intensity of GFP-PHD in the cytosol are due to changes in the cytosolic concentration

of GFP-PHD.

Because GFP-PHD dissociates and reassociates at the membrane, strictly speaking the

probe measures changes in IP3 occurring at the membrane. Changes to the concentra-

tion of GFP-PHD inside the cytosol are delayed due to the finite rate of diffusion. This

delay is likely to be of the order of hundreds of milliseconds, depending on the precise

value of the diffusion coefficient and the dimensions of the cell (see Fig. 3.5). This

implies a limit to the resolution of fast events, for example Ca2+-IP3 waves, if they are

observed by averaging relative changes in fluorescence over the whole cell interior. Over

sufficiently long times, such as the time scale of desensitization of the P2Y2 receptors,

this complication can be ignored and the GFP-PHD in the cytosol can be considered

to be in equilibrium with that bound to the membrane.

Saturation of the curves shown in Fig. 3.7 is due to maximal release of GFP-PHD into

the cytosol rather than to saturation of the receptors by ligand, the latter occurring

at concentrations greater than about 1 mM ATP (see Fig. 3.6(a)). Hence, saturation

of the GFP-PHD system may pose a problem in estimating large IP3 concentrations

(hence the large error bar in Fig. 3.6(a)), and yet for concentrations of the order of

several micromolar the relation between IP3 and cytosolic GFP-PHD fluorescence can

be taken as linear (see Fig. 3.3).

An interesting aspect of the work of Hirose et al. (1999) is the possibility of Ca2+-IP3

waves and oscillations (see their Figs. 3A and Fig. 4). The model for the dynamics

of GFP-PHD given in this chapter together with the model for Ca2+ and IP3 changes

due to metabotropic receptor activity in Chapter 2 could be used to study these phe-

nomema. The signal transduction model can exhibit oscillations with the appropriate

choice of parameter values but would have to be extended to include diffusion of IP3

and Ca2+ for the case of Ca2+-IP3 waves.
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Chapter 4

Fire-Diffuse-Fire calcium waves in
confined intracellular spaces

In this chapter the propagation of Fire-Diffuse-Fire (FDF) Ca2+ waves through a three

dimensional rectangular domain is considered. The domain is infinite in extent in

the direction of propagation but with lateral barriers to diffusion which contain Ca2+

pumps. The Ca2+ concentration profile due to the firing of a release site (spark) is

derived analytically based on the Green’s function for the diffusion equation on the

domain. The existence, stability and speed of these waves is shown to be critically

dependent on the dimensions of the domain and the Ca2+ pump rate. It is shown

that the smaller the dimensions of the region, the lower the Ca2+ release flux required

for wave propagation, and the higher the wave speed. Also it is shown that the region

may support multiple Ca2+ wavefronts of varying wave speed. This model is relevant to

subsarcolemmal waves in atrial myocytes (Kockskämper et al., 2001), and the results

may be of importance in understanding the roles of the endoplasmic/sarcoplasmic

reticulum, surface membranes and Ca2+ pumps in the intracellular Ca2+ dynamics of

cells.

4.1 Introduction

Intracellular Ca2+ waves occur in many different cell types including smooth muscle

(Pabelick et al., 1999), cardiac cells (Wussling and Salz, 1996) and Xenopus oocytes

(Fontanilla and Nuccitelli, 1998). These waves arise from the process of calcium in-

duced calcium release (CICR) from channels in the endoplasmic (ER) or sarcoplasmic

reticulum (SR) coupled to the diffusion of Ca2+ in the cytosol.

Ca2+ waves sometimes propagate as a sequence of bursts or ‘sparks’ of Ca2+ from
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adjacent clusters of ryanodine channels (RyRs) as in the case of cardiac cells (Lipp et

al., 2002), or as ‘puffs’ of Ca2+ from clusters of inositol trisphosphate (IP3) sensitive

channels in the case of immature Xenopus oocytes (Parker and Yao, 1991; Callamaras

et al., 1998).

Experiments show that Ca2+ sparks are localized in regions close to the sarcolemma

(SL) in both smooth muscle cells (Perez et al., 1999; Jaggar et al., 2000) and cardiac

myocytes (Blatter, 1997; Niggli, 1999). In both these cell types the SL is known to

be in close proximity to parts of the SR, forming a restricted subsarcolemmal space in

which diffusion of Ca2+ occurs.

In the case of atrial myocytes, Ca2+ entering the cell via an L-type channel may trigger

an apposite cluster of ryanodine channels on the SR. The resulting release of Ca2+,

diffusing through the subsarcolemmal space can trigger further sparks and Ca2+ waves;

see Fig. 1.7. This subsarcolemmal wave precedes Ca2+ release in the central part of

the cell. In other cell types, for example the rat megakaryocyte (Thomas et al., 2001),

Xenopus laevis egg (Fontanilla and Nuccitelli, 1998), and vascular endothelial cells

(Hüser and Blatter, 1997), Ca2+ waves in the peripheral regions of the cell have been

observed to precede waves in the central parts of the cell and travel with a greater

speed.

A theoretical study of the propagation of Ca2+ waves due to Ca2+ sparks in confined

diffusion spaces is therefore desirable. An investigation of the effect of obstructed

diffusion of Ca2+ transients in smooth muscle is given in the papers by Kargacin and

Fay (1991) and Kargacin (1994) but these do not include a study of Ca2+ sparks or

waves.

There is however a growing literature concerned with mathematical models for Ca2+

waves arising from sparks. The papers by Keizer et al. (1998), Pearson and Dawson

(1998), and Dawson et al. (1999), use a model comprising a collinear arrangement of

Ca2+ release units (CRUs) coupled by a one-dimensional Ca2+ diffusion model with

linearized buffering. The paper by Coombes (2001) extends the model to include the

effects of removal of Ca2+ by linearized Ca2+ pumps. These models are collectively

known as the Fire-Diffuse-Fire (FDF) model, a term that will be adopted in this

thesis. In the FDF model, a CRU fires when the concentration of Ca2+ at the site

reaches a threshold level, that is, the firing is deterministic. Also, once a site fires it

is assumed to remain in a refractory period indefinitely and is unable to re-fire. The

paper by Keizer and Smith (1998) modifies the FDF model by using a stochastic model

for the Ca2+ release site, based on the kinetics of isolated Ryanodine channels (Györke

and Fill, 1993). This allows simulations of terminating and re-starting Ca2+ waves,
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although the detailed behaviour of the Ryanodine channel is not yet well understood

(Sitsapesan and Williams, 2000).

Other authors have developed three-dimensional cell models for Ca2+ waves where

the CRUs are arranged in regular arrays throughout the cell, for example along z-

lines in cardiac myocytes. In the paper by Subramanian et al. (2001), CRU firing is

deterministic whereas in that by Izu et al. (2001), a CRU is assigned a probability

of firing which is an increasing function of Ca2+ concentration. Both models include

anisotropic diffusion of Ca2+ as well as realistic models for Ca2+ buffering and Ca2+

pumps.

There is a corresponding literature devoted to models for Ca2+ waves propagating due

to puffs of Ca2+ from clusters of IP3 receptors located on the SR. The IP3 channel is

sensitive to both IP3 and Ca2+ (Bezprozvanny et al., 1991), and can exhibit both CICR

and IP3 induced Ca2+ release (IICR). Theoretical studies of Ca2+ waves propagating

between release sites in one space dimension are given by Kupferman et al. (1997),

Bugrim et al. (1997) and Falcke et al. (2000).

These models are not wholly suitable to studying FDF waves in confined spaces. The

one-dimensional models lack the necessary additional space dimensions and the three-

dimensional models do not include barriers to diffusion explicitly. In this chapter an

extension of the one-dimensional FDF model to include constrained diffusion in three

space dimensions will be given. Numerical simulations and analytical techniques will

then be used to study the properties of Ca2+ spark induced Ca2+ waves in confined

intracellular spaces.

4.2 Methods

4.2.1 Model for Ca2+ release and uptake

Once the Ca2+ concentration at a site exceeds a fixed concentration, cthr, a release of

Ca2+ into the intracellular space occurs. The release site is then assumed to remain

unable to fire again indefinitely. The case of sparks occurring in an infinite domain B,

shown in Fig. 4.1, is considered.



Chapter 4: Ca2+ waves in confined spaces 76

Ca    wave propagation

Ca    release sites2+

H

2+
Direction of

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

P

Q

R

S

y

x

z

W

d B

Figure 4.1: Schematic diagram of the intracellular space, B, through which the Ca2+

waves propagate. B is an infinite rectangular region bounded by membranes P,Q,R

and S. Surface R is the sarcolemma and the planes P,Q and S form the sarcoplasmic
reticulum. All surfaces possess a uniform distribution of pumps which remove Ca2+

from B. Surface P has Ca2+ release sites located at regular intervals along its centre
line. If the Ca2+ concentration at a site rises above a certain threshold a spark will
occur there as a release of Ca2+ from the site. This causes the Ca2+ concentration at
neighbouring sites to increase possibly leading to further Ca2+ release events and Ca2+

waves.
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Fundamental to the present work is the analytic solution for the Ca2+ concentration

in B due to a single spark occurring at some instant at a point on the SR, (x, y, z) =

(pd, 0, 0), for p an integer. It suffices to determine the solution for a spark occurring

at the origin, (x, y, z) = (0, 0, 0), at t = 0. This is obtained by solving the diffusion

equation on B,
∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2
+
∂2c

∂z2

)
, (4.1)

for −∞ < x < ∞, 0 < y < H, −W/2 < z < W/2, t > 0, where c denotes the

concentration of Ca2+and D is the diffusion coefficient of free Ca2+. To take into

account buffering of Ca2+, D is replaced by βD in eqn (4.1) for constant β < 1, where

it is assumed that any Ca2+ buffers in B are stationary and far below saturation (see

Wagner and Keizer, 1994).

The boundary condition for the part of the SR comprising plane P in Fig. 4.1 is

D
∂c

∂y
= − F

Ton

[Θ(t) − Θ(t− Ton)] δ(x)δ(z) + ksrc, at y = 0. (4.2)

The first term in the RHS of eqn (4.2) models the release of Ca2+ into B from the site.

For simplicity this release is modelled as a rectangular pulse of F moles of Ca2+ over a

time Ton, where Θ(·) is the Heaviside step function and δ(·) is the Dirac delta function.

The second term in eqn (4.2) models the Ca2+ pumps in the SR which are assumed

to be uniformly distributed, linear with respect to Ca2+ concentration and have pump

rate ksr > 0.

The boundary conditions for the part of the SR comprising planes Q and S in Fig. 4.1

are respectively

D
∂c

∂z
= ksrc at z = −W/2, (4.3)

D
∂c

∂z
= −ksrc at z = W/2, (4.4)

and the boundary condition on the SL, plane R in Fig. 4.1 is

D
∂c

∂y
= −kslc at y = H, (4.5)

which models the Ca2+ removal through the SL at a rate ksl either by Ca2+ pumps or

by Na+/Ca2+ exchangers.

In eqn (4.1) βD is replaced by D, now taken to denote the effective diffusion coeffi-

cient of Ca2+, leaving eqn (4.1) unchanged. Multiplying eqns (4.2)-(4.5) through by

β then replacing βD, βF, βksr and βksl by the effective parameters D,F, ksr and ksl

respectively, leaves eqns (4.2)-(4.5) unchanged.
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The presence of basal Ca2+, cbas, due to homogeneously distributed leaks in the SR

and the SL can be modelled by adding constant terms to the RHS of eqns (4.2)-(4.5).

The solution to this new system of eqns in the steady state can be derived analytically

(details omitted) but by linearity of the boundary value problem can be subtracted

out leaving eqns (4.1)-(4.5). It therefore suffices to omit the SR leaks and use a zero

initial concentration of Ca2+ in B,

c(x, y, z, 0) = 0, (4.6)

and replace cthr by cthr − cbas.

The eqns (4.1)-(4.6) are now non-dimensionalized using the following substitutions,

x̂ =
x

d
, ŷ =

y

d
, ẑ =

z

d
, t̂ =

D

d2
t,

w =
W

d
, h =

H

d
, γsr =

dksr

D
, γsl =

dksl

D
,

α =
cthrd

3

F
, ĉ =

c

cthr
, τ =

DTon

d2
.





(4.7)

The boundary value problem (4.1)-(4.6) becomes

∂ĉ

∂t̂
=

∂2ĉ

∂x̂2
+
∂2ĉ

∂ŷ2
+
∂2ĉ

∂ẑ2
, (4.8)

∂ĉ

∂ŷ
= − 1

ατ

[
Θ(t̂) − Θ(t̂− τ)

]
δ(x̂)δ(ẑ) + γsrĉ, at ŷ = 0, (4.9)

∂ĉ

∂ŷ
= −γslĉ at ŷ = h, (4.10)

∂ĉ

∂ẑ
= ±γsrĉ at ẑ = ∓w/2, (4.11)

ĉ = 0 at t̂ = 0, (4.12)

for −∞ < x̂ < ∞, 0 < ŷ < h, −w/2 < ẑ < w/2, t̂ > 0. In what follows the ‘hats’

will be dropped and the variables c, x, y, z and t will be considered dimensionless. The

boundary value problem defined by eqns (4.8)-(4.12) can be solved analytically (see

Appendix G), the solution being c =
1

α
f(x, y, z, t) with

f(x, y, z, t) =

∞∑

k=0

∞∑

m=0

[I(x, t, λ) − Θ(t− τ)I(x, t− τ, λ)]Y (y, λm)Z(z, λk) (4.13)

where λ = λ2
m + λ2

k and

I(x, t, λ) =
1

4τ
√
λ

{
2e−

√
λ|x| − e−

√
λ|x|erfc

(
− |x|

2
√
t

+
√
λt

)

−e
√
λ|x|erfc

( |x|
2
√
t

+
√
λt

)}
, (4.14)
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Y (y, λm) =
4λm cosφm cos(λmy − φm)

2λmh+ sin 2(λmh− φm) + sin 2φm
, (4.15)

Z(z, λk) =
4λk cos

[
λk

w
2
− φk

]
cos
[
λk(z + w

2
) − φk

]

2λkw + sin 2(λkw − φk) + sin 2φk
, (4.16)

for −∞ < x < ∞, 0 < y < h, −w/2 < z < w/2, t > 0. In eqn (4.14) erfc(·) is the

complementary error function defined by

erfc(x) =
2√
π

∫ ∞

x

e−u2

du.

The φm and φk in eqns (4.15) and (4.16) are defined by

tanφm =
γsr

λm

, tanφk =
γsr

λk

, (4.17)

where for each m, λm satisfies

tanλmh =
(γsr + γsl)λm

λ2
m − γsrγsl

, (4.18)

and for each k, λk satisfies

tanλkh =
2γsrλk

λ2
k − γ2

sr

. (4.19)

4.2.2 Existence and stability of Ca2+ waves

If a sequence of sites fire, the resulting Ca2+ concentration at any time, by linearity

of the boundary value problem (4.8)-(4.12), will be the sum of the contributions from

each of the sites that have fired previously. Thus for a sequence of firings at times

{t0, t1, . . . tN−1} at corresponding sites with x-coordinates {x0, x1, . . . xN−1} and with

zero Ca2+ concentration for t < t0, the resulting Ca2+ concentration for t > tN−1 is

c(x, y, z, t) =
1

α

N−1∑

p=0

f(x− xp, y, z, t− tp), (4.20)

with f defined by eqns (4.13)-(4.19). The location and time of the next firing is

determined by solving for xN and t in eqn (4.20) such that c(xN , 0, 0, t) = 1. Given

a sequence of N consecutive firings of adjacent sites in the positive x direction it can

be shown that c(x, 0, 0, t) is a monotone decreasing function of x > xN−1 for t > tN−1

fixed. Therefore, the next site that fires must be located at xN = N , so tN is determined

by solving the nonlinear equation

c(N, 0, 0, tN) =
1

α

N−1∑

p=0

f((N − p), 0, 0, tN − tp) = 1. (4.21)
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Consider the special case where a single spark has fired at (x, y, z) = (0, 0, 0) and

t = 0. From eqn (4.21), the time at which the adjacent site, located at x = 1, fires is

determined by solving

f(1,∆) = q(∆) = α, (4.22)

for ∆, where for convenience the y and z coordinates are now omitted, being both zero

in what follows. Existence of a solution of eqn (4.22) determines whether a spontaneous

isolated spark can trigger Ca2+ release from a neighbouring site.

Subsequent firings may occur at consecutive sites xN+1, xN+2 etc. and these are

determined by reapplying eqn (4.21) to the augmented sequence to compute tN+1, tN+2

etc. Indeed, the system may exhibit perpetual self-generation of sparks, resulting in an

infinite sequence of firings. If in such a sequence, the time differences ∆N = tN − tN−1

converge to a limit ∆ as N → ∞, then a travelling wave solution exists with speed

v = 1/∆. To determine the existence of such solutions, let n = N − p then as N →
∞, tN − tp → (N − p)∆ = n∆ and eqn (4.21) becomes

∞∑

n=1

f(n, n∆) = g(∆) = α. (4.23)

All possible travelling waves correspond to the solutions of eqn (4.23) for ∆.

Stability of the Ca2+ wave to a perturbation of the instant of firing of a release site

is now considered. A Ca2+ wave is assumed to have been established in B by a large

number of firings of adjacent sites with time difference ∆ determined from eqn (4.23).

When the Ca2+ threshold is reached at a particular site located ahead of the wavefront,

the firing time of this site is given a small perturbation ε, 0 < |ε| << ∆. The

subsequent perturbations of the firing time differences in the travelling wavefront are

assumed to be of the form ερk, k = 1, 2, 3 . . . ; ρ ∈ R, hence the firing time of the

Nth site (where N = 1 corresponds to the site of the initial perturbation), will be

N∆ + ε
N−1∑

k=0

ρk.

For the Ca2+wavefront to persist after N perturbed firings, the Ca2+ concentration
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threshold at the next site must be reached implying

∞∑

n=N

f

(
n, n∆ + ε

N−1∑

k=0

ρk

)

+f

(
(N − 1), (N − 1)∆ + ε

N−1∑

k=1

ρk

)

...

+f
(
2, 2∆ + ε(ρN−2 + ρN−1)

)

+f
(
1,∆ + ε ρN−1

)
= α.

(4.24)

Eqn (4.24) is now expanded in powers of ε. By virtue of eqn (4.23) terms of order ε0

in the expansion vanish and collecting the terms of order ε1 gives

∞∑

n=N

f ′ (n, n∆)

N−1∑

k=0

ρk

+f ′ ((N − 1), (N − 1)∆)
N−1∑

k=1

ρk

...

+f ′ (2, 2∆) (ρN−2 + ρN−1)

+f ′ (1,∆) ρN−1 = 0,

(4.25)

where the prime denotes the partial derivative with respect to time. Evolution over a

large number of firings of perturbations for which |ρ| ≥ 1 is considered by dividing eqn

(4.25) through by ρN−1 and letting N → ∞. The result is

ψ(ρ) =
∞∑

n=1

f ′(n, n∆)
n−1∑

k=0

ρ−k = 0. (4.26)

Stability of the Ca2+ wave is determined by solving eqn (4.26) for all possible val-

ues of the eigenvalue ρ. If there exists an eigenvalue |ρ| > 1, the magnitude of the

perturbations will grow with time and the wavefront is unstable.

Because channel firing is deterministic, the sequence of perturbations to the firing times

given an initial perturbation is unique and so therefore is the value of ρ. Uniqueness

of ρ implies that stability changes with respect to variations in a parameter wherever

ψ(1) = 0 or ψ(−1) = 0. From eqns (4.26) and (4.23),

ψ(1) =
∞∑

n=1

nf ′(n, n∆) =
∂g

∂∆
, (4.27)
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therefore stability changes at the stationary points of g(∆). Also from eqn (4.26),

ψ(−1) =

∞∑

n=1

1

2
(1 − (−1)n) f ′(n, n∆). (4.28)

The explicit formula for f ′ is given by

f ′(n, n∆) =

∞∑

k=0

∞∑

m=0

[G(n, n∆, λ) − Θ(n∆ − τ)G(n, n∆ − τ, λ)]Y (0, λm)Z(0, λk),

(4.29)

for n∆ 6= τ , where λ = λ2
m + λ2

k and the function G, defined by

G(x, t, λ) =
∂I

∂t
=
e
−x

2

4t
− λt

√
4πt

, (4.30)

is obtained by differentiating eqn (G.31) of Appendix G. In eqn (4.29), the Y, Z, λm

and λk are defined by eqns (4.15)-(4.19).

The ranges of values of ∆ over which the Ca2+ wavefront is stable or unstable are

completely determined by the roots of eqns (4.27) and (4.28). As the value of ∆ is

varied, the stability of the Ca2+ wave solutions alternate between stable and unstable

as it passes through each of these solutions.

4.3 Results

Results are now given of the analysis of the existence and stability of FDF Ca2+ wave-

fronts and the simulation of their evolution, using the formulae given in the previous

section and 4.2.2. Further details of the numerical techniques used here are given in

Appendix F. Values of variables and parameters are given in the non-dimensional form

defined in (4.7).

Firstly, results are given for a channel opening time of τ = 0.05 and for the absence of

Ca2+ pumps, that is, for SR and SL pump rates of γsr = γsl = 0 respectively. Results

for the existence and stability of Ca2+ waves are given in the form of curves of the

function g with respect to the firing interval ∆, obtained by evaluating eqn (4.23) with

all other parameters held constant. By eqn (4.23) the ordinate of these curves is the

value of α required for Ca2+ waves for a given value of ∆.

Fig. 4.2 shows the effects of lateral obstructions on the propagation of Ca2+ waves.

Variations in the values of the channel parameter, α, with respect to values of ∆ are

shown for different values of the non-dimensional domain width, w = 0.1, 1 and 100
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with the non-dimensional domain height h = 0.1 fixed. At large values of ∆ the curves

in Fig. 4.2(a) tend towards values of α for which the sequence of channel firings results

in a spatially uniform concentration of Ca2+ at the threshold value (c = 1). It follows

that as ∆ → ∞, α → 1/(wh).

The squares drawn on the curves in Fig. 4.2 represent the maximum value of α, αc,

such that a single isolated spark can trigger a neighbouring site and thereby initiate a

travelling wavefront. αc was found by numerically determining the maximum value of

q defined by eqn (4.22), over all values of ∆. Inspection of Fig. 4.2 shows that waves

may propagate for α > αc but this can only happen if initially a sequence of firings are

to occur non-deterministically, without the need for triggering by adjacent channels.

Fig. 4.2 shows that as w is decreased, αc and the maximum possible value of α both

increase. From (4.7) this means that the lower the required amount of Ca2+ released

per site, F , or equivalently, the higher the allowable triggering threshold, cthr, for

travelling wavefronts to exist. Also as w is decreased the curves change from having

one turning point (when w = 100), to having two (when w = 5) to having none (when

w = 1). For the case of w = 5, shown in Fig. 4.2(b), up to three different Ca2+

wavefronts are possible for a given value of α. The regions where multiple wavefront

solutions exist are due to the idealized rectangular geometry of the domain and are

probably not physically relevant.

In Fig. 4.2 the solid parts of the curves indicate where the wavefronts are stable

and the dashed parts indicate where the wavefronts are unstable. On the parts of

the bifurcation curves for ∆ less than the value corresponding to αc, the wavefronts

are stable. This is because an individual channel releases enough Ca2+ to trigger its

neighbour and maintain wave propagation regardless of the size of a perturbation given

to its firing time. Elsewhere, dots on the curves indicate where there is a change in

stability. As described in Section 2 above, this occurs either at a turning point of the

bifurcation curve or at a root of eqn (4.28). In Fig. 4.2 the dot with the smallest value

of ∆ on each curve indicates the root of eqn (4.28), there being only one root for all

values of ∆. The other dots are turning points of the curves.



Chapter 4: Ca2+ waves in confined spaces 84

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

∆

α

 w=100

 w=5

 w=1

 w=0.1

(b)

10
−1

10
0

10
1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

∆

α

 w=5

Figure 4.2: Figures showing values of the channel parameter α required for Ca2+ waves
with channel firing time difference ∆. The solid parts of the curve show where the
wavefronts are stable and the dashed parts show where they are unstable. The dots
on the curves indicate where the stability changes. The squares indicate values of α
above which spontaneous Ca2+ waves do not occur. Results are given for the absence
of Ca2+ pumps, γsr = γsl = 0. (a) Bifurcation diagram of α with respect to ∆ for
domain widths w = 0.1, w = 1 and w = 100 with domain height h = 0.1 fixed. The
dotted curve shows the result for w = 5 which appears in detail in (b). In this latter
case, depending on the value of α, a maximum of two stable wavefronts are possible.
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Figure 4.3: Bifurcation diagrams of α with respect to ∆ for domain heights h =
0.01, h = 0.1 and h = 1 with domain width w = 10 fixed. Results are given for the
absence of Ca2+ pumps, γsr = γsl = 0.



Chapter 4: Ca2+ waves in confined spaces 86

10
−2

10
−1

10
0

0

5

10

15

20

25

30

 h

W
av

e 
sp

ee
d

Wave speed
α

c
γ
sr

=0
γ
sr

=0.5

10
−2

10
−1

10
0
0

5

10

15

α
c

10
−2

10
−1

10
0
0

5

10

15

10
−2

10
−1

10
0
0

5

10

15

10
−2

10
−1

10
0
0

5

10

15

Figure 4.4: Figure showing the variations in wave speed and channel parameter critical
value, αc, with domain height, h, for the parameter values α = 0.25, w = 10 and
γsl = 0. Results for two different values of the SR pump rate are given, γsr = 0
(circles) and γsr = 0.5 (crosses).
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Despite being dynamically stable, wavefronts associated with parts of the bifurcation

curves that decrease with respect to ∆ are non-physical. They can only occur in a fully

time dependent simulation (see below) if the sites only fire when the Ca2+ concentration

at the site decreases through the threshold value from above. The parts of the curves

that increase with respect to ∆ correspond to wavefronts where the Ca2+ concentration

must increase through the threshold for each site to fire. These cases are physically

relevant because they correspond to wavefronts propagating through a region with an

initial low Ca2+ concentration.

Fig. 4.3 shows bifurcation diagrams for values of α with respect to values of ∆ for

h = 0.01, 0.1 and 1 with w = 10 fixed. The value of αc and the maximum value of

α both increase as the height of the domain decreases. Fig. 4.3 also shows that for a

fixed value of α, the corresponding value of ∆ decreases as h decreases implying that

the speed of the corresponding wavefront increases.

This dependence of the non-dimensional speed of a Ca2+ wavefront, 1/∆, on h is plotted

in Fig. 4.4 (solid curve with circles), for the parameter values α = 0.25 and w = 10.

The wave speed is approximately independent of h for h > 1 but increases by a factor

of two as h is decreased by two orders of magnitude. Also plotted in Fig. 4.4 are

the corresponding results for αc (dashed curve with circles), which shows even greater

sensitivity to decreases in h. The wavespeed increases because the increased spatial

confinement of Ca2+ increases the magnitudes of the gradients in Ca2+ concentration

and therefore the rate of diffusion between release sites.

Fig. 4.5(a) shows variations in non-dimensional Ca2+ concentration, c, with respect to

the non-dimensional x-coordinate along the line connecting the release sites (y = z = 0)

for the case of α = 0.25, h = 0.1 and w = 10 in the absence of Ca2+ pumps. The values

of c in the wavefront were calculated by simulating 20 consecutive channel firings as

described in Appendix F, and graphing eqn (4.20) using the resulting firing times. In

Fig. 4.5 the last site to fire is assigned the firing time t = 0 and x-coordinate x = 0.

Wavefront profiles are plotted at t = 0.02∆, 0.05(τ) and 0.99∆ (∆ = 0.0876). The

peaked appearance of the wavefront is due mainly to the release of Ca2+ from the site

at x = 0 with previous sites that have fired contributing to a ‘tail’ Ca2+ distribution

which is constant and spatially homogeneous as x → −∞. The magnitude of this tail

Ca2+ concentration can be shown to be c∞ = 1/(αwh). Hence for these parameters

c∞ = 4 but this is not evident in Fig. 4.5(a) because of the relatively slow equilibration

of Ca2+ in the z direction, resulting in a gently sloping Ca2+ tail.
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Figure 4.5: (a) Ca2+ wavefront profiles for α = 0.25, h = 0.1 and w = 10 in the
absence of Ca2+ pumps. The curves indicate values of c along the line y = 0, z = 0,
at t = 0.02∆ (dotted curve), t = τ = 0.05 (dashed curve) and t = 0.99∆ (solid curve).
The open circles represent sites that have fired, the filled circles represent sites that
have yet to fire. (b) Time courses of Ca2+ concentration in the absence of pumps, at
x = 0 (solid curve) and at x = 0.2 (dashed curve), and in the presence of pumps,
γsr = 0.5 at x = 0 (dotted curve).
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Figure 4.6: Ca2+ concentration, c, with respect to x and z at t = 0.99∆ on the plane
y = 0 in the presence of SR Ca2+ pumps, γsr = 0.5 and γsl = 0. The dashed lines mark
the positions of the sites that have fired, the solid lines mark the positions of sites that
are yet to fire.
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Time courses of Ca2+ corresponding to the wavefront in Fig. 4.5(a) are shown in Fig.

4.5(b). Results are given for c with respect to non-dimensional time, t, at x = 0 (solid

curve) and x = 0.2 (dashed curve). Note that the peak value of c at x = 0 is reached

at t = τ and that the peak value of c measured just off the release site, at x = 0.2,

is significantly less. The Ca2+ time course for a wavefront with the same parameters

except with a SR pump rate of γsr = 0.5 is also shown in Fig. 4.5(b) (dotted curve).

There is a slight decrease in the peak value of c relative to the case of γsr = 0, but

the most significant effect is in the Ca2+ tail. The presence of pumps removes all Ca2+

from the domain so that c → 0 as t → ∞ in the time courses and c → 0 as x → −∞
in the wavefronts.

Fig. 4.6 depicts the wavefront at t = 0.99∆ (∆ = 0.1) in the presence of SR pumps,

γsr = 0.5, γsl = 0, in both the x and z directions. Due to the small value of h used,

c is approximately constant with respect to y for these parameters. The presence of

pumps has reduced the peak value of c to 32.5 in this figure from 57.4 in Fig. 4.5(a)

(see curve for t = 0.99∆).

Now the corresponding results for the existence and stability of FDF Ca2+ waves in

the presence of SR and SL pumps (γsr ≥ 0, γsl ≥ 0) will be given. The effects of SR

Ca2+ pumps only, γsr > 0 and γsl = 0, on the bifurcation diagrams for h = 0.1 and

w = 10 are shown in Fig. 4.7. Results for four different SR pump rates, γsr = 0 (dotted

curve), 5 × 10−6, 0.5 and 5, are given (the result for γsr = 0 also appears in Fig. 4.3).

For γsr = 5× 10−6 an additional turning point now appears and α→ 0 as ∆ → ∞. A

change of stability occurs at this new turning point leading to stable (but non-physical)

wavefronts for points on the decreasing part of the curve above the turning point. As

γsr is increased to 0.5 the upper two turning points on the previous curve disappear

along with the region of instability between them. Also, the lower region of instability

shrinks but never completely disappears as γsr is increased further.

As γsr is increased to 5, the last site that fires becomes the main contributor towards

Ca2+ in the wavefront, with Ca2+ released from previous sites being removed more

rapidly by the higher pump rate. As discussed above, regions of the curves for α > αc

depend on the contribution of several channels, so these regions will shrink as γsr

increases. As seen in Fig. 4.7, αc tends towards the peak value of α, which also

decreases as γsr increases. Note also in Fig. 4.7, the increase in values of ∆ on the

increasing parts of the curves as γsr is increased, indicating a slowing of the wavefront

in the presence of pumps.
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Figure 4.7: Bifurcation diagram of α with respect to ∆ for different values of the
SR pump rate, γsr = 0 (dotted curve), γsr = 5 × 10−6, γsr = 0.5 and γsr = 5 with
parameters γsl = 0, h = 0.1 and w = 10 fixed.
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Figure 4.9: Bifurcation diagrams of α with respect to ∆ for different arrangements of
the SR and SL pumps. A comparison is given between the effects of SL pumps only,
γsr = 0 and γsl = 5, SR pumps only, γsr = 5 and γsl = 0, and no pumps, γsr = 0 and
γsl = 0 (dotted curve, taken from Fig. 4.3). All curves are for the parameters h = 1
and w = 10.
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Fig. 4.8 shows the effects on the bifurcation diagrams of keeping the SR pump rate

constant and varying h with w = 10 fixed. Results for h = 0.01, 0.1 and 1 are shown

with γsr = 5 and γsl = 0. Note that the effects of the pumps become more pronounced

as h is decreased. For example, the peak value of α for each curve decreases as h

is increased whereas the converse is true when γsr = 0 (see Fig. 4.3). This occurs

because even though a fixed amount of Ca2+ is released by each spark, independent of

the dimensions of the domain, the rate at which the pumps remove this Ca2+ increases

as h decreases.

This effect is also illustrated in Fig. 4.4 where the wave speed and αc are plotted with

respect to h for a wavefront with the parameters α = 0.25, w = 10, γsr = 0.5 and

γsl = 0. The slowing of the wavefront in the presence of pumps is evident (solid curve

with crosses) but far more striking is the effect of pumps on αc (dashed curve with

crosses). As h is decreased from 1, the wave speed and αc both increase, peak and then

decrease. This shows that enhancement of propagation of Ca2+ waves due to increased

spatial confinement of Ca2+ release is counteracted by the increased effect of the Ca2+

pumps. The curve of wave speed with respect to h terminates when h is sufficiently

small that travelling wavefront solutions no longer exist.

Fig. 4.9 shows a comparison between the effects of SR and SL pumps. Bifurcation

curves are given for SL pumps only, γsr = 0 and γsl = 5, for h = 1 as well as the

corresponding results for SR pumps only, γsr = 5 and γsl = 0 (taken from Fig. 4.8).

Also, the corresponding results in the absence of pumps are given (dotted curve, taken

from Fig. 4.3). The arrangement of pumps is more significant the larger the value of

h. For the case where there are only SL pumps, the larger the value of h the greater

the distance over which Ca2+ must diffuse to reach the pumps relative to the distance

to the next site. The effect of the pumps on wave propagation is therefore less and

the bifurcation curve more closely resembles that in the absence of Ca2+ pumps. For

small h, where the distribution of Ca2+ in the y direction can be considered uniform,

SR and SL pumps with the same pump rate are equivalent and the bifurcation curves

for the two different arrangements of pumps described above will be the same.

Fig. 4.10(a) shows bifurcation diagrams of α with respect to ∆ for different values of

the channel opening time, τ = 1×10−4, 0.05 (dotted curve, also appearing in Fig. 4.3)

and 1. The parameters h = 0.1, w = 10 and γsr = γsl = 0 are all held constant. Since

τ = 1 × 10−4 is much less than the values of ∆ in the range given in the figure, the

curve for this value of τ closely approximates the bifurcation curve where the release

of Ca2+ is an impulse. The main effect of increasing τ is to decrease the wave speed

which occurs because the distributed release of Ca2+ from a site decreases the rate of
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diffusion of Ca2+ to the next site. When ∆ < τ , the release of Ca2+ from two or more

sites overlap however the stability analysis, as indicated in Fig. 4.10(a), shows that

Ca2+ waves are stable even when there are an arbitrarily large number of overlapping

firings (∆ << τ). The wavefronts for such a case are illustrated in Fig. 4.10(b) for

α = 0.01 and τ = 1. c is plotted with respect to x at t = 0.99∆ along the line

y = z = 0 for the parameter values γsr = 0 (solid curve) and γsr = 2 (dashed curve)

with the same values of h, w and γsl as for Fig. 4.10(a). The firing time differences

for these wavefronts are ∆ = 0.0820 and ∆ = 0.2186 for the two different values of γsr

implying that respectively 12 and 4 channels are open simultaneously in the wavefront.

In the absence of pumps, Ca2+ released from the open channels accumulates leading to

a wavefront with a rising tail. When γsr = 2, however, the rate of release of Ca2+ from

the open channels is balanced by its rate of removal by the pumps thereby leading to

a series of peaks of the same height in the wavefront.
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Figure 4.10: (a) Bifurcation diagrams of α with respect to ∆ for different values of
the channel opening time τ = 1 × 10−4, 0.05 and 1. Curves are given for the absence
of Ca2+ pumps, γsr = γsl = 0, and for the parameters h = 0.1 and w = 10. (b)
Corresponding wavefront profiles at t = 0.99∆ for the case of τ = 1 and α = 0.01. The
solid curve is for γsr = 0, the dashed curve is for γsr = 2. The parameters w, h and γsl

are the same as for (a).
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4.4 Discussion

This chapter presents a theoretical investigation of Fire-Diffuse-Fire Ca2+ waves in con-

fined intracellular spaces. The existence and stability of the Ca2+ waves was explored

for different parameter values using bifurcation diagrams of the channel parameter, α,

with respect to the firing time difference, ∆. Also, time dependent simulations were

carried out to examine the spatial and temporal profiles of the Ca2+ wavefronts. It

was found that the smaller the lateral extent (height and width) of the domain, the

greater the allowable value of α, or equivalently, the smaller the amount of Ca2+ release

required for stable Ca2+ waves. Decreasing the lateral dimensions also increased the

wave speed and αc, the critical value of α for spontaneous Ca2+ waves, thereby making

spontaneous waves more likely. Increasing the SR and SL pump rates slowed the wave-

fronts and also raised the amount of Ca2+ release necessary for stable, spontaneous

Ca2+ waves. For large values of the domain height, h, the SL Ca2+ pumps were found

to have a far smaller effect on the wavefronts than the SR Ca2+ pumps.

The model presented in this chapter is an extension of existing models with one space

dimension, to the case of three space dimensions. Release of Ca2+ into a three dimen-

sional domain is clearly more realistic, whereas a one dimensional model of diffusion

is equivalent to a three dimensional model where the the release sites are modelled as

infinite planes lying perpendicular to the direction of wave propagation.

The results may be relevant to saltatory Ca2+ waves in cat atrial myocytes (Kockskämper

et al., 2001), which were observed to propagate between neighbouring sites in the sub-

sarcolemmal regions of the cells. The distance between the SL and SR was observed to

be as little as 15 nm. Using this value and the reported site spacing of approximately

2 µm, it follows that h = 7.5× 10−3 so the results for h = 0.01 reported in this chapter

may be relevant to those experiments. However, the height of the subsarcolemmal

domain is likely to be highly non-uniform in the direction of propagation (see Fig. 1.6)

and a larger value for h, 0.1, has been used throughout most of this chapter. A precise

value for the domain width is not known but a value of w = 10 has been used to model

a domain that is wide relative to its height and CRU spacing.

A Ca2+ wave observed by Kockskämper et al. (2001) had a wave speed of 86 µm s−1

which using a free Ca2+ diffusion coefficient of D = 300 µm2 s−1 and a buffering factor

of β = 1/50 implies a non-dimensional firing time difference of ∆ = 0.035. This

is in the range of values of ∆ for stable instantaneous Ca2+ waves predicted in this

chapter. The value α = 0.25 used for the wavefronts shown in Fig. 4.5 was chosen so

that the channel firings did not overlap, consistent with the experimental evidence of
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Kockskämper et al. (2001). However, channel parameters obtained from theoretical

studies of sparks in cardiac cells typically result in far lower values of α. For example,

in a theoretical study of the release of Ca2+ from the SR in the dyadic cleft of cardiac

cells (Langer and Peskoff, 1996), a channel current, I, of 2 pA is used with a channel

firing time of Ton = 20 ms. This gives a release flux of F =
ITon

2C
= 2 × 10−19 mol,

where C = 9.65 × 104 is the Faraday constant, and using a firing threshold of cthr = 1

µM this implies α =
cthrd

3

βF
= 2 × 10−3. This value is well below αc for most of the

parameter values used in this study. It is an open question whether or not α exceeding

the critical value, αc, is a significant effect in reality. However the combination of high

pump rates and small domain heights could cause propagation failure. Such would be

the case for the parameters h = 0.01 and γsr = 5 for α = 2 × 10−3 (see Fig. 4.8).

Note that the value of Ton = 20 ms corresponds to a value of τ =
βDTon

d2
= 0.03 which

is close to the value of τ = 0.05 used in this chapter.

A realistic value for γ is obtained from Fig. 7 of Kockskämper et al. (2001) which shows

a Ca2+ concentration decay half-time of approximately T1/2 = 200 ms, giving a decay

constant of kdec = ln 2/T1/2 = 3.5. Assuming that this decay is completely due to the

SR pumps and that the tail Ca2+ is homogeneous with respect to space in the domain,

it can be shown that for h << w, kdec =
ksr

2h
. It follows that γsr =

d2hkdec

βD
= 0.4, close

to the value of γsr = 0.5 used in this chapter. In the time course of Ca2+ shown in Fig.

4.5(b) for γsr = 0.5 at x = 0 (dotted curve), pumps contribute significantly to the the

decay of Ca2+ for values of t greater than approximately 0.15 . For 0.05 < t < 0.15

there is a more rapid phase of Ca2+ decay dominated by diffusion away from the release

site.

Using the firing threshold of cthr = 1 µM gives a peak Ca2+ concentration at the release

site in the hundreds of µM range (see Figs. 4.5 and 4.10(b)). These predictions are

consistent with those from theoretical studies of Ca2+ release into the dyadic cleft of

cardiac cells (Peskoff et al., 1992 and Langer and Peskoff, 1996).

The comparison of the results reported here with those of Kockskämper et al. (2001) is

complicated since in reality the dimensions of the subsarcolemmal domain is likely to be

highly non-uniform. Further, Ca2+ release into the subsarcolemmal region is likely not

to be completely confined by the SR as in the present model, but also simultaneously

diffuse into the central parts of the cell. An alternative approach to the modelling

is to not use an impermeable SR, but make transverse diffusion of Ca2+ slower than

longitudinal diffusion in the peripheral region (Subramanian et al., 2001).
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A peripherally located ER/SR is a significant feature of several different cell types

including the rat megarkaryocyte (Thomas et al., 2001), rabbit heart Purkinje cell

(Cordeiro et al., 2001) and smooth muscle (Kargacin and Fay, 1991). The arrangement

of surface and internal membranes may play a role in the formation and propagation

of Ca2+ waves in these cells. Indeed, in the case of the rat megarkaryocyte (Thomas et

al., 2001), Xenopis laevis egg (Fontanilla and Nuccitelli, 1998) and vascular endothelial

cell (Hüser and Blatter, 1997), the higher wave speed observed in the peripheral region

of the cell relative to the central part could be due to higher spatial confinement of

Ca2+ release in the former, consistent with the results reported in this thesis.

¨̂



100

Appendices

Appendix A

Detailed mathematical model of the G protein cas-

cade

In this section, a detailed mathematical model is formulated for the G protein cascade

occurring due to a homogeneous distribution of P2Y2 receptors in the cell membrane.

By making various assumptions, a reduced and simplified set of model equations are

then derived. The detailed schematic diagram for the G protein cascade is shown in

Fig. 2.2.

P2Y2 receptor model

The following process by which any G protein coupled receptor activates G protein

molecules is well established, see for example Lamb and Pugh (1992), Lauffenburger

and Linderman (pp 185-187, 1993). A P2Y2 receptor binds a molecule of G · GDP

from the membrane and brings about the exchange of a GTP nucleotide (assumed to

be immediately available from the cytosol) for the GDP nucleotide bound to the G

protein. These processes can be modelled with the scheme

k+
1 k2 k−1

G · GDP + P2Y2 � P2Y2·G · GDP → P2Y2 · G · GTP � P2Y2 + G · GTP,
k−1 k+

1

for forward and reverse rate constants k+
1 , k

−
1 . In Appendix B it is shown that

k2 = k2 + (k∗2 − k2)ρr,

where k∗2, k2 are the exchange rates for the ligand bound and unbound receptor. ρr is

the ratio of the amount of ligand bound receptor to total receptor and is determined
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independently of the G protein kinetics.

G protein subunit kinetics

The kinetics for the interaction of the G protein subunits and the trimer is assumed to

depend on whether the nucleotide bound to it is GTP or GDP. Hence

k−3
G · GTP � Gα · GTP + Gβγ

k+
3

and

k̂−3
Gα · GDP + Gβγ � G · GDP,

k̂+
3

for forward rate constants k+
3 , k̂

+
3 and reverse rate constants k−3 , k̂

−
3 .

PLC effector model

The activity of the PLC molecule is mediated by several different binding sites (Rebbec-

chi and Pentyala, 2000). Of relevance to the present study are the three sites each of

which bind to the Gα subunit, Ca2+ ion and PIP2 molecule. It is assumed that the

probability of binding to any of these sites is not dependent on the state of occupancy

of the other sites.

Binding of the Gα subunit

The Gα · GTP (Gαq/11· GTP) molecules are deactivated by binding to GTPase acti-

vating proteins (GAPs; see Iyengar, 1997). PLC-β1 (hereafter PLC) itself acts as a

GAP for Gq (Morris and Scarlata, 1997; Mukhophadhyay and Ross, 1999) hence the

interaction of the G-protein with PLC is modelled with the following kinetics,

k̂+
1 k̂2

Gα · GTP + PLC � Gα · GTP · PLC →
k̂−1

k̂−1
Gα · GDP · PLC � Gα · GDP + PLC,

k̂+
1
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for forward rate constants k̂+
1 , k̂2 and reverse rate constant k̂−1 .

Binding of Ca2+

The kinetics for the binding of Ca2+ from the cytosol to PLC are

k+
3

PLC + Ca2+
� PLC · Ca2+ .
k−3

Binding of PIP2

PLC binds to the membrane at the pleckstrin homology domain of PIP2 · PLC which

is also bound to Ca2+ and Gα · GTP is considered to be most effective in hydrolysing

PIP2 molecules to give IP3 and diacylglycerol. The kinetics for the interaction of PLC

and PIP2 are

k+
4 kh

PLC + PIP2 � PLC · PIP2 → IP3 + PLC,
k−4

for forward and reverse rate constants k+
4 , k

−
4 . In a similar calculation to that in

Appendix B it can be shown that

kh = kh + (k∗h − kh)ρb, (A.1)

with ρb being the ratio of the amount of Ca2+ and Gα ·GTP bound PLC to total PLC.

Mathematical formulation

Using the law of mass action, the kinetic schemes presented above can be formulated

in terms of a set of coupled ordinary differential equations. It suffices to give these

equations in the shorthand form

du

dt
= Au + Buu, (A.2)

u = u0 at t = 0, (A.3)

where u is the vector of species concentrations, A is a matrix specifying the forward

reaction steps and B is a rank 3 tensor specifying the reverse reaction steps. In what

follows, a bracketed species name is used to denote the quantity of that species.
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Receptor-effector equations

It can be shown using eqn (A.2) that
d

dt
([P2Y2]+[P2Y2 ·G ·GDP]+[P2Y2 ·G ·GTP]) =

0 and
d

dt
([PLC] + [Gα · GTP · PLC] + [Gα · GDP · PLC]) = 0, from which follows

the conservation conditions for the total number of receptors, [(P2Y2)T], and PLC,

[(PLC)T],

[P2Y2] + [P2Y2 · G · GDP] + [P2Y2 · G · GTP] = [(P2Y2)T],

[PLC] + [Gα · GTP · PLC] + [Gα · GDP · PLC] = [(PLC)T].

}
(A.4)

To simplify the initial value problem (A.2)-(A.3), it is assumed that all processes act

over a fast time scale except the GTP-GDP exchange and GTP hydrolysis. The fast

processes are treated as being in dynamic equilibrium hence

[G · GDP][P2Y2] = K1[P2Y2 · G · GDP], [PLC][Gα · GTP] = K̂1[Gα · GTP · PLC],

[P2Y2][G · GTP] = K1[P2Y2 · G · GTP], [PLC][Gα · GDP] = K̂1[Gα · GDP · PLC],

[G · GTP] = K3[Gα · GTP][Gβγ], [Gα · GDP][Gβγ] = K̂3[G · GDP],





(A.5)

where K{•} = k−{•}/k
+
{•} except that K3 = k+

3 /k
−
3 .

By taking sums and differences of combinations of the equations constituting (A.2),

new equations are obtained where the rate constants for the rapid kinetics do not

appear. There are at most three such equations that are linearly independent there

being 11 variables but 8 constraints (A.4)-(A.5). Alternatively these three equations

can be reasoned by applying the law of mass action to groups of species as follows.

Firstly, the rate of change of species bound with the GDP nucleotide is the difference

between the rate of deactivation of Gα · GTP and the rate of activation of G.GDP

hence

d

dt
([G · GDP] + [P2Y2 · G · GDP] + [Gα · GDP] + [Gα · GDP · PLC]) =

k̂2[Gα · GTP · PLC] − k2[P2Y2 · G · GDP]. (A.6)

Similarly for molecules bound with G · GTP the equation

d

dt
([Gα · GTP] + [G · GTP] + [P2Y2 · G · GTP] + [Gα · GTP · PLC]) =

k2[P2Y2 · G · GDP] − k̂2[Gα · GTP · PLC], (A.7)

is obtained. Next, since the GTPase does not alter the total number of Gα subunits,

it follows that the difference between the rate of change of the numbers of Gβγ and



Appendices 104

Gα subunits is zero hence

d[Gβγ]

dt
− d

dt
([Gα · GTP] + [Gα · GTP · PLC] + [Gα · GDP · PLC] + [Gα · GDP])

= 0. (A.8)

A more appropriate third equation is derived by taking the sum of eqns (A.7) and

(A.8) which is

d

dt
([Gβγ] + [G · GTP] + [P2Y2 · G · GTP] − [Gα · GDP · PLC] − [Gα · GDP]) =

k2[P2Y2 · G · GDP] − k̂2[Gα · GTP · PLC]. (A.9)

It is possible to eliminate all but the three dependent variables [G · GDP], [Gβγ]

and [Gα · GTP] from equations (A.6),(A.7) and (A.9). The remaining variables are

expressed in terms of these three using eqns (A.4) and (A.5) thus

[P2Y2 · G · GDP] =
[(P2Y2)T][G · GDP]

K1 + [G · GDP] +K3[Gβγ][Gα · GTP]
,

[P2Y2 · G · GTP] =
K3[(P2Y2)T][Gβγ][Gα · GTP]

K1 + [G · GDP] +K3[Gβγ][Gα · GTP]
,

[G · GTP] = K3[Gβγ][Gα · GTP],

[Gα · GTP · PLC] =
[(PLC)T][Gβγ][Gα · GTP]

K̂3[G · GDP] + [Gβγ](K̂1 + [Gα · GTP])
,

[Gα · GDP · PLC] =
K̂3[(PLC)T][G · GDP]

K̂3[G · GDP] + [Gβγ](K̂1 + [Gα · GTP])
,

[Gα · GDP] =
K̂3[G · GDP]

[Gβγ]
.





(A.10)

Substitution of (A.10) into (A.6),(A.7),(A.9) gives the three equations involving only

[G·GDP], [Gβγ] and [Gα·GTP]. The coupling between these equations reduces consid-

erably when it is assumed that G·GTP dissociates irreversibly into its subunits, K3 = 0,

and that Gα.GDP re-associates with Gβγ irreversibly, K̂3 = 0. With these assumptions

the eqns (A.10) imply [P2Y2 ·G·GTP] = [Gα·GDP·PLC] = [G·GTP] = [Gα·GDP] = 0

and

[P2Y2 ·G ·GDP] =
[(P2Y2)T][G · GDP]

K1 + [G · GDP]
, [Gα ·GTP ·PLC] =

[(PLC)T][Gα · GTP]

K̂1 + [Gα · GTP]
.

then eqns (A.6),(A.7) and (A.9) reduce to

d[G · GDP]

dt
=

[
1 +

[(P2Y2)T]K1

(K1 + [G · GDP])2

]−1
(
k̂2[(PLC)T][Gα · GTP]

K̂1 + [Gα · GTP]

−k2[(P2Y2)T][G · GDP]

K1 + [G · GDP]

)
, (A.11)
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d[Gα · GTP]

dt
=

[
1 +

[(PLC)T]K̂1

(K̂1 + [Gα · GTP])2

]−1(
k̂2[(PLC)T][Gα · GTP]

K̂1 + [Gα · GTP]

+
k2[(P2Y2)T][G · GDP]

K1 + [G · GDP]

)
, (A.12)

d[Gβγ]

dt
=
k̂2[(PLC)T][Gα · GTP]

K̂1 + [Gα · GTP]
+
k2[(P2Y2)T][G · GDP]

K1 + [G · GDP]
. (A.13)

Ca2+ binding equations

A similar development is carried out to determine the relation between the numbers

of Ca2+ bound PLC and total PLC. Only two equations are required for this namely

the conservation equation, [PLC] + [PLC · Ca2+] = [(PLC)T], and the fast kinetics

assumption, [PLC][Ca2+] = Kc[PLC · Ca2+], where Kc = k−3 /k
+
3 . Together these

equations imply [PLC · Ca2+] =
[(PLC)T][Ca2+]

Kc + [Ca2+]
.

PIP2 binding equations

It is assumed that the binding kinetics are fast whilst the hydrolysis and replenishment

rates are slow. From the equations for the reaction kinetics there is obtained the

conservation equation

[PLC] + [PLC · PIP2] = [(PLC)T], (A.14)

the fast kinetics condition

[PLC][(PIP2)M] = K4[PLC · PIP2], (A.15)

where K4 = k−4 /k
+
4 and [(PIP2)M] is used to denote the quantity of free PIP2 in the

membrane. From eqns (A.14) and (A.15) follows the relation

[PLC · PIP2] =
[(PLC)T][(PIP2)M]

K4 + [(PIP2)M]
. (A.16)

Taking appropriate combinations of the kinetic equations gives

d

dt
([(PIP2)M] + [PLC · PIP2]) = −kh[PLC · PIP2] + rr[H], (A.17)

where replenishment of PIP2 to the membrane has been included as described in the

text. The total number of PIP2 molecules in the membrane is

[PIP2] = [PLC · PIP2] + [(PIP2)M], (A.18)
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and solving eqns (A.14), (A.15) and (A.18) gives a quadratic equation relating [PLC ·
PIP2] and [PIP2],

[PLC · PIP2]
2 − ([(PLC)T] + [PIP2] +K4)[PLC · PIP2] + [(PLC)T][PIP2] = 0, (A.19)

which has solution

[PLC · PIP2] = 1
2
{[(PLC)T] + [PIP2] +K4

−
√

([(PLC)T] + [PIP2] +K4)2 − 4[(PLC)T][PIP2]
}
. (A.20)

Because binding at the sites on the PLC molecule is mutually exclusive, the fraction

ρb of PLC bound to both Gα · GTP and Ca2+ is

ρb =
[Gα · GTP · PLC]

[(PLC)T]

[PLC · Ca2+]

[(PLC)T]
=

(
[Gα · GTP]

K̂1 + [Gα · GTP]

)(
[Ca2+]

Kc + [Ca2+]

)
.

(A.21)

Combining (A.17),(A.18),(A.21) and (A.1) gives

d[PIP2]

dt
= −I + rr[H], (A.22)

where the IP3 production rate is

I =

[
kh + (k∗h − kh)

(
[Ca2+]

Kc + [Ca2+]

)(
[Gα · GTP]

K̂1 + [Gα · GTP]

)]
[PLC · PIP2]. (A.23)

Linearized theory

Eqns (A.11)-(A.13) are linear when [G · GDP], [(P2Y2)T] � K1 and [Gα · GTP],

[(PLC)T] � K̂1, in which case

d[G · GDP]

dt
= kd[Gα · GTP] − ka(δ + ρr)[G · GDP], (A.24)

d[Gα · GTP]

dt
= −kd[Gα · GTP] + ka(δ + ρr)[G · GDP], (A.25)

where ka =
(k∗2 − k2)[(P2Y2)T]

K1

, kd =
k̂2[(PLC)T]

K̂1

and the parameter δ = k2/(k
∗
2 − k2)

measures the ratio of the activity of ligand unbound and bound receptor. Adding eqns

(A.24) and (A.25) gives
d

dt
([G·GDP]+[Gα·GTP]) = 0, so [G·GDP]+[Gα·GTP] = [GT ]

and then equation (A.25) becomes

d[Gα · GTP]

dt
= ka(δ + ρr)([GT ] − [Gα · GTP]) − kd[Gα · GTP]
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Similarly eqns (A.22),(A.23) and (A.20) are linearized by assuming [PIP2], [(PLC)T] �
K4. In eqn (A.20), 2[PLC · PIP2]/K4 is expanded in a double Taylor series in the

variables [(PLC)T]/K4 and [PIP2]/K4. Retaining the highest order term gives [PLC ·
PIP2] = [(PLC)T][PIP2]/K4. Equations (A.22),(A.23) and (A.20) become

d[PIP2]

dt
= −I + rr[H],

I =

[
kh + (k∗h − kh)

(
[Ca2+]

Kc + [Ca2+]

)
[Gα · GTP]

K̂1

]
[(PLC)T][PIP2]

K4

. (A.26)

The rate of hydrolysis of PIP2 due to PLC not bound to both Ca2+ and Gα · GTP is

ignored hence kh = 0. It is convenient to re-write (A.26) in the form

I = α

(
[Ca2+]

Kc + [Ca2+]

)
[Gα · GTP][PIP2].
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Appendix B

Proof of modification of GDP-GTP exchange rate

Consider separately the kinetics for the ligand bound receptor, P2Y2
∗,

k+
1 k∗2 k+

1

G · GDP + P2Y
∗
2 � P2Y

∗
2 · G · GDP → P2Y

∗
2 · G · GTP � P2Y

∗
2 + G · GTP,

k−1 k−1

and unbound receptor P̂2Y2,

k+
1 k̂2 k+

1

G · GDP + P̂2Y2 � P̂2Y2 · G · GDP → P̂2Y2 · G · GTP � P̂2Y2 + G · GTP.
k−1 k−1

In what follows, a bracketed species name is used to denote the quantity of that species.

Using the rapid binding assumption, the ratio [P2Y
∗
2 · G · GDP]/([P2Y

∗
2 · G · GDP] +

[P̂2Y2 ·G ·GDP]) is the same as the ratio of bound receptor to total receptor, ρr, since

ρr = ([P2Y
∗
2] + [P2Y

∗
2 · G · GDP] + [P2Y

∗
2 · G · GTP]) /

(
[P2Y

∗
2] + [P̂2Y2]

+ [P2Y
∗
2 · G · GDP] +[P̂2Y2 · G · GDP] + [P2Y

∗
2 · G · GTP] + [P̂2Y2 · G · GTP]

)
,

and substituting K1[P2Y
∗
2 ·G·GDP] = [G·GDP][P2Y

∗
2], K1[P2Y

∗
2 ·G·GTP] = [P2Y

∗
2][G·

GTP], K1[P̂2Y2 ·G ·GDP] = [G ·GDP][P̂2Y2] and K1[P̂2Y2 ·G ·GTP] = [P̂2Y2][G ·GTP]

gives

ρr =
[P2Y

∗
2 · G · GDP]

[
1 + K1

[G·GDP]
+ [G·GTP]

[G·GDP]

]

([P2Y
∗
2 · G · GDP] + [P̂2Y2 · G · GDP])

[
1 + K1

[G·GDP]
+ [G·GTP]

[G·GDP]

]

=
[P2Y

∗
2 · G · GDP]

([P2Y∗
2 · G · GDP] + [P̂2Y2 · G · GDP])

.

Similarly the ratio of unbound receptor to total receptor, is ρr = [P̂2Y2·G·GDP]/([P2Y
∗
2·

G · GDP] + [P̂2Y2 · G · GDP]). These results can be arrived at intuitively because the

rapid binding assumption means that bound and unbound receptors become rapidly

distributed among all G protein subspecies in the same proportion.

Replacing k∗2[P2Y
∗
2 ·G·GDP] by ρrk

∗
2([P2Y

∗
2 ·G·GDP]+[P̂2Y2 ·G·GDP]) and k2[P̂2Y2 ·G·

GDP] by ρrk2([P2Y
∗
2 ·G·GDP]+[P̂2Y2·G·GDP]) in the equations for the kinetic schemes
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above gives the equations describing the modified kinetic scheme. The effective rate

constant is k2 = ρrk
∗
2 + ρrk2 but since ρr + ρr = 1 it follows that k2 = k2 + (k∗2 − k2)ρr.
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Appendix C

Boundary layer analysis for the GFP-PHD equa-

tions.

In this section a formal derivation is given of eqns (3.12)-(3.15) from the boundary value

problem defined by eqns (3.1)-(3.8). The key assumption made is that the spatial and

temporal dynamics of the GFP-PHD are limited only by its rate of diffusion in the

cytosol. The rate of binding of GFP-PHD to both IP3 and PIP2 are assumed to occur

over a much faster time scale. The cases where the membrane kinetics are fast or slow

relative to diffusion are treated separately below.

Perturbation techniques will be applied to eqns (3.1)-(3.8) in Cartesian coordinates

for the case of one space dimension which is aligned with a vector normal to the cell

membrane. The space coordinate is x, the membrane is at x = 0 and the cytoplasm oc-

cupies the half space x > 0. For further explanation and description of the perturbation

techniques used here see Kevorkian and Cole (1996).

Slow membrane kinetics

In what follows the bracketed species names denote the concentrations of the corre-

sponding species shown in Fig. 3.2. Making the substitution k±i = ε−2k̂±i for i = 1, 2, 3

and ε� 1, and rearranging eqns (3.1),(3.2) and (3.5)-(3.8) gives

ε2∂[GP]

∂t
= ε2DGP

∂2[GP]

∂x2
− k̂+

1 [IP3][GP] + k̂−1 [GP · IP3], (C.1)

ε2∂[GP · IP3]

∂t
= ε2DGP

∂2[GP · IP3]

∂x2
− k̂−1 [GP · IP3] + k̂+

1 [IP3][GP], (C.2)

and

ε2

(
∂[GPM]

∂t
− l+1 [GP] + l−1 [GPM]

)
=

− k̂+
2 [IP3][GPM] + k̂−2 [GP · IP3

M] − k̂+
3 [PIP2

M][GPM] + k̂−3 [GP · PIP2
M], (C.3)

ε2

(
∂[GP · IP3

M]

∂t
− l+2 [GP · IP3] + l−2 [GP · IP3

M]

)
= k̂+

2 [IP3][GPM] − k̂−2 [GP · IP3
M],

(C.4)

ε2∂[PIP2
M]

∂t
= −k̂+

3 [PIP2
M][GPM] + k̂−3 [GP · PIP2

M], (C.5)

ε2∂[GP · PIP2
M]

∂t
= k̂+

3 [PIP2
M][GPM] − k̂−3 [GP · PIP2

M]. (C.6)
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The relations between the concentrations of the surface bound quantities are obtained

by substituting the expansions of the variables

[GPM] = [GPM]0 + ε[GPM]1 + ε2[GPM]2 + . . . ,

[GP · IP3
M] = [GP · IP3

M]0 + ε[GP · IP3
M]1 + ε2[GP · IP3

M]2 + . . . ,

[PIP2
M] = [PIP2

M]0 + ε[PIP2
M]1 + ε2[PIP2

M]2 + . . . ,

[GP · PIP2
M] = [GP · PIP2

M]0 + ε[GP · PIP2
M]1 + ε2[GP · PIP2

M]2 + . . . ,

into eqns (C.3)-(C.6). Collecting terms of order ε0 gives

[IP3][GPM]0 = KG2[GP · IP3
M]0, (C.7)

[PIP2
M]0[GPM]0 = KG3[GP · PIP2

M]0, (C.8)

which are respectively eqns (3.13) and (3.15). A boundary layer is conjectured to exist

at x = 0 with coordinate

x̂ =
x

ε
. (C.9)

The outer solutions (far from the membrane) of eqns (C.1) and (C.2) are obtained by

substituting the expansions of [GP] and [GP · IP3],

[GP](x, t) = [GP]0(x, t) + ε[GP]1(x, t) + . . . , (C.10)

[GP · IP3](x, t) = [GP · IP3]0(x, t) + ε[GP · IP3]1(x, t) + . . . , (C.11)

into eqns (C.1) and (C.2). Collecting terms to order ε0 gives

[IP3][GP]0 = KG1[GP · IP3]0, (C.12)

which is eqn (3.12). Inside the boundary layer the GFP-PHD concentrations are ex-

panded thus

[GP](x̂, t) = [GP]0(x̂, t) + ε[GP]1(x̂, t) + . . . , (C.13)

[GP · IP3](x̂, t) = [GP · IP3]0(x̂, t) + ε[GP · IP3]1(x̂, t) + . . . . (C.14)

Substituting eqn (C.9) into eqns (C.1)-(C.2) gives

ε2∂[GP]

∂t
= DGP

∂2[GP]

∂x̂2
− k̂+

1 [IP3][GP] + k̂−1 [GP · IP3], (C.15)

ε2∂[GP · IP3]

∂t
= DGP

∂2[GP · IP3]

∂x̂2
− k̂−1 [GP · IP3] + k̂+

1 [IP3][GP], (C.16)

and the boundary conditions are obtained by substituting eqn (C.9) into eqns (3.3)

and (3.4) giving

DGP
∂[GP]

∂x̂
= ε(l+1 [GP] − l−1 [GPM]), (C.17)

DGP
∂[GP · IP3]

∂x̂
= ε(l+2 [GP · IP3] − l−2 [GP · IP3

M]). (C.18)
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Substituting eqns (C.13)-(C.14) into eqns (C.15)-(C.18) and assuming the time deriva-

tives of [GP] and [GP · IP3] are O(1), gives to order ε0,

DGP
∂2[GP]0
∂x̂2

− k̂+
1 [IP3][GP]0 + k̂−1 [GP · IP3]0 = 0, (C.19)

DGP
∂2[GP · IP3]0

∂x̂2
− k̂−1 [GP · IP3]0 + k̂+

1 [IP3][GP]0 = 0, (C.20)

∂[GP]0
∂x̂

=
∂[GP · IP3]0

∂x̂
= 0. (C.21)

The general solution of eqns (C.19)-(C.20) is of the form

[GP]0 = q(t) + v(t)e−αx̂, (C.22)

[GP · IP3]0 = s(t) + w(t)e−αx̂, (C.23)

α =

√
k̂+

1 [IP3] + k̂−1
DGP

, (C.24)

but the boundary conditions (C.21) imply v = w = 0 so [GP]0 and [GP · IP3]0 are

constant with respect to space in the boundary layer.

In order to determine the relationship between [(GP)mem] and [(GP)cyt] one more equa-

tion is needed to supplement eqns (C.7),(C.8) and (C.12). This is obtained from higher

order terms in ε. To ε1 the expansions of eqns (C.1) and (C.2) are

DGP
∂2[GP]1
∂x̂2

− k̂+
1 [IP3][GP]1 + k̂−1 [GP · IP3]1 = 0, (C.25)

DGP
∂2[GP · IP3]1

∂x̂2
− k̂−1 [GP · IP3]1 + k̂+

1 [IP3][GP]1 = 0, (C.26)

but expansion of the boundary conditions (3.3) and (3.4) yield

∂[GP]1
∂x̂

= l+1 [GP]0 − l−1 [GPM]0, (C.27)

∂[GP · IP3]1
∂x̂

= l+2 [GP · IP3]0 − l−2 [GP · IP3
M]0. (C.28)

The general solution of eqns (C.25)-(C.26) is of the form

[GP]1 = q(t) + v(t)e−αx̂, (C.29)

[GP · IP3]1 = s(t) + w(t)e−αx̂, (C.30)

α =

√
k̂+

1 [IP3] + k̂−1
DGP

. (C.31)

Adding eqn (C.27) to eqn (C.28) and integrating with respect to x̂ gives

∂[GP]1
∂x̂

+
∂[GP · IP3]1

∂x̂
= C(t), (C.32)



Appendices 113

for some function C(t) but substitution of eqns (C.29)-(C.31) into eqn (C.32) implies

−α(v + w)e−αx̂ = C(t),

which can only be satisfied if either (a) v = w = 0 or (b) v = −w. Case (a) implies

l+1 [GP]0 − l−1 [GPM]0 = 0, (C.33)

l+2 [GP · IP3]0 − l−2 [GP · IP3
M]0 = 0, (C.34)

but these two equations together with eqns (C.7),(C.8) and (C.12) lead to an over-

constraint on the parameters besides which case (a) is included in case (b). Turning

now to case (b), this implies

∂[GP]1
∂x̂

= −∂[GP · IP3]1
∂x̂

,

which implies

−l+1 [GP]0 + l−1 [GPM]0 + l−2 [GP · IP3
M]0 − l+2 [GP · IP3]0 = 0, (C.35)

which is eqn (3.14).

Fast membrane kinetics

If the membrane kinetic parameters scale with ε in the same way as the ki, that is,

l±i = ε−2l̂±i for i = 1, 2 where ε � 1, then the simplified problem is the same but the

analysis differs slightly.

Rearranging eqns (3.1),(3.2) and (3.5)-(3.8) gives

ε2∂[GP]

∂t
= ε2DGP

∂2[GP]

∂x2
− k̂+

1 [IP3][GP] + k̂−1 [GP · IP3], (C.36)

ε2∂[GP · IP3]

∂t
= ε2DGP

∂2[GP · IP3]

∂x2
− k̂−1 [GP · IP3] + k̂+

1 [IP3][GP], (C.37)

and

ε2∂[GPM]

∂t
= +l̂+1 [GP] − l̂−1 [GPM] − k̂+

2 [IP3][GPM] + k̂−2 [GP · IP3
M]

− k̂+
3 [PIP2

M][GPM] + k̂−3 [GP · PIP2
M],

ε2∂[GP · IP3
M]

∂t
= +l̂+2 [GP · IP3] − l̂−2 [GP · IP3

M]

+ k̂+
2 [IP3][GPM] − k̂−2 [GP · IP3

M],

ε2∂[PIP2
M]

∂t
= −k̂+

3 [PIP2
M][GPM] + k̂−3 [GP · PIP2

M],

ε2∂[GP · PIP2
M]

∂t
= k̂+

3 [PIP2
M][GPM] − k̂−3 [GP · PIP2

M].
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Again the following expansions are used

[GPM] = [GPM]0 + ε[GPM]1 + ε2[GPM]2 + . . . ,

[GP · IP3
M] = [GP · IP3

M]0 + ε[GP · IP3
M]1 + ε2[GP · IP3

M]2 + . . . ,

[PIP2
M] = [PIP2

M]0 + ε[PIP2
M]1 + ε2[PIP2

M]2 + . . . ,

[GP · PIP2
M] = [GP · PIP2

M]0 + ε[GP · PIP2
M]1 + ε2[GP · PIP2

M]2 + . . . ,

to derive the equations

[IP3][GPM]0 = KG2[GP · IP3
M]0, (C.38)

[PIP2
M]0[GPM]0 = KG3[GP · PIP2

M]0, (C.39)

[GP]0 = L1[GPM]0, (C.40)

[GP · IP3]0 = L2[GP · IP3
M]0, (C.41)

where L1 = l̂−1 /l̂
+
1 , L1 = l̂−2 /l̂

+
2 . Eqn (3.24) comes from adding eqns (C.40) and (C.41)

and eliminating [GP · IP3
M]0 using (C.38).

The boundary layer variable is

x̂ =
x

ε
. (C.42)

The outer solution of eqns (C.36) and (C.37) is obtained by substituting the expansions

[GP](x, t) = [GP]0(x, t) + ε[GP]1(x, t) + . . . ,

[GP · IP3](x, t) = [GP · IP3]0(x, t) + ε[GP · IP3]1(x, t) + . . . ,

into eqns (C.36) and (C.37) and collecting terms to order ε0 giving

[IP3][GP]0 −KG1[GP · IP3]0 = 0. (C.43)

Inside the boundary layer the GFP-PHD concentrations are expanded thus

[GP](x̂, t) = [GP]0(x̂, t) + ε[GP]1(x̂, t) + . . . , (C.44)

[GP · IP3](x̂, t) = [GP · IP3]0(x̂, t) + ε[GP · IP3]1(x̂, t) + . . . (C.45)

Substituting eqn (C.42) into eqns (C.36) and (C.37) gives

ε2∂[GP]

∂t
= DGP

∂2[GP]

∂x̂2
− k̂+

1 [IP3][GP] + k̂−1 [GP · IP3], (C.46)

ε2∂[GP · IP3]

∂t
= DGP

∂2[GP · IP3]

∂x̂2
− k̂−1 [GP · IP3] + k̂+

1 [IP3][GP], (C.47)

and the boundary conditions are obtained by substituting eqn (C.42) into eqns (3.3)

and (3.4) giving

εDGP
∂[GP]

∂x̂
= l̂+1 [GP] − l̂−1 [GPM], (C.48)

εDGP
∂[GP · IP3]

∂x̂
= −l̂−2 [GP · IP3

M] + l̂+2 [GP · IP3]. (C.49)
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Substituting eqns (C.44) and (C.45) into eqns (C.46)-(C.49) and assuming the time

derivatives of [GP] and [GP · IP3] are O(1), gives to order ε0 :

DGP
∂2[GP]0
∂x̂2

− k̂+
1 [IP3][GP]0 + k̂−1 [GP · IP3]0 = 0, (C.50)

DGP
∂2[GP · IP3]0

∂x̂2
− k̂−1 [GP · IP3]0 + k̂+

1 [IP3][GP]0 = 0, (C.51)

+l̂+1 [GP]0 − l̂−1 [GPM]0 = 0, (C.52)

−l̂−2 [GP · IP3
M]0 + l̂+2 [GP · IP3]0 = 0. (C.53)

Note that eqns (C.52) and (C.53) are the same as eqns (C.40) and (C.41) respectively.

The solutions of eqn (C.50) and (C.51) namely

[GP]0 = q(t) + v(t)e−αx̂, (C.54)

[GP · IP3]0 = s(t) + w(t)e−αx̂, (C.55)

α =

√
k̂+

1 [IP3] + k̂−1
DGP

,

must satisfy the condition (C.43) in the cytosol and the conditions (C.38)-(C.41) at

the membrane. Letting x̂→ ∞ in eqns (C.54) and (C.55) and matching with the outer

solution (C.43) gives the condition

[IP3]q = −KG1s. (C.56)

At any instant of time the cytosolic concentration of GFP-PHD adjacent to the mem-

brane is [(GP)cyt] = [GP]0 + [GP · IP3]0. Evaluating the sum of eqns (C.54) and (C.55)

at x̂ = 0 together with the condition v = −w implies

q + s = [(GP)cyt],

which together with eqn (C.56) implies

q =
KG1[(GP)cyt]

KG1 + [IP3]
,

s =
[IP3][(GP)cyt]

KG1 + [IP3]
.

Eqns (C.38)-(C.41) can be used to show

[GP] =
L1KG2[GP · IP3]

L2[IP3]
,

that is

q + v =
L1KG2(s+ w)

L2[IP3]
,
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which using v = −w and eqn (C.56) can be rearranged to give v in terms of q :

v =
−q(L2KG1 − L1KG2)

(L2[IP3] + L1KG2)
.

The series expansions of [GP] and [GP · IP3] can now be expressed to first order in ε :

[GP] =
[(GP)cyt]KG1

([IP3] +KG1)

[
1 + [IP3]

(L1KG2 − L2KG1)

(L2[IP3] + L1KG2)
exp

(
−αx̂
ε

)]
+O(ε), (C.57)

[GP · IP3] =
[(GP)cyt][IP3]

([IP3] +KG1)

[
1 − (L1KG2 − L2KG1)

(L2[IP3] + L1KG2)
exp

(
−αx̂
ε

)]
+O(ε). (C.58)

Adding eqns (C.57) and (C.58) shows that to first order in ε in the boundary layer,

[(GP)cyt] is a function of time only.

The exponential terms in eqns (C.57) and (C.58) apparently indicate that the size of

the boundary layer should grow as ε is increased but this does not mean that [(GP)cyt]

is constant over a larger region of the interior since increasing ε also increases the size

of the O(ε) truncation error.
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Appendix D

Competitive effects between GFP-PHD and PLC

First the question of inhibition of GFP-PHD binding to PIP2 is addressed. In what

follows, a bracketed species name is used to denote the quantity of that species. The

relevant components of the reaction kinetics in Fig. 3.2 together with the binding

kinetics for PLC and PIP2 are

k+
3

PIP2
M + GPM

� GP · PIP2
M,

k−3

k+
4

PIP2
M + PLC � PLC · PIP2

M.
k−4





(D.1)

The conservation conditions are

[PLC] + [PLC · PIP2
M] = [(PLC)T], (D.2)

[GP · PIP2
M] + [PIP2

M] + [PLC · PIP2
M] = [PIP2], (D.3)

for the total amounts of PIP2, [PIP2], and PLC, [(PLC)T], respectively. Assuming

rapid binding kinetics,

KG3[GP · PIP2
M] = [PIP2

M][GPM], (D.4)

K4[PLC · PIP2
M] = [PIP2

M][PLC], (D.5)

where K4 = k−4 /k
+
4 . Eqns (D.2) and (D.5) imply

[PLC · PIP2
M] =

[(PLC)T][PIP2
M]

K4 + [PIP2
M]

, (D.6)

and substituting eqn (D.6) into eqn (D.3) and using eqn (D.4) to eliminate [PIP2
M]

gives

[GP · PIP2
M] +

KG3[GP · PIP2
M]

[GPM]
+

[(PLC)T]KG3[GP · PIP2
M]

K4[GPM] +KG3[GP · PIP2
M]

= [PIP2]. (D.7)

Eqn (D.7) is the counterpart of eqn (3.15) and the former reduces to the latter under

the conditions described below.

To study the effect of GFP-PHD binding on PIP2 hydrolysis by PLC, the reaction

kinetics (D.1) are extended to
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k+
3

PIP2
M + GPM

� GP · PIP2
M,

k−3

k+
4

PIP2
M + P̂LC � P̂LC · PIP2

M
,

k−4

k+
4 kh

PIP2
M + PLC∗

� PLC∗ · PIP2
M → PLC∗ + IP3,

k−4





(D.8)

where PLC∗ and P̂LC denote active and inactive PLC respectively. The conservation

conditions are

[PIP2
M] + [GP · PIP2

M] + [P̂LC · PIP2

M
] + [PLC∗ · PIP2

M] = [PIP2], (D.9)

[P̂LC] + [PLC∗] + [P̂LC · PIP2

M
] + [PLC∗ · PIP2

M] = [(PLC)T],(D.10)

[GP · PIP2
M] + [GPM] = [(GP)T], (D.11)

where is [(GP)T] the total amount of GFP-PHD. The fast kinetics equations are

KG3[GP · PIP2
M] = [PIP2

M][GPM], (D.12)

K4[P̂LC · PIP2

M
] = [PIP2

M][P̂LC], (D.13)

K4[PLC∗ · PIP2
M] = [PIP2

M][PLC∗], (D.14)

and if ρ is the fraction of active PLC then

[PLC∗] + [PLC∗ · PIP2
M] = ρ[(PLC)T]. (D.15)

The equations describing the kinetics (D.8) can be combined to eliminate the rapid

kinetics and this leads to an equation for total PIP2,

d[PIP2]

dt
= −kh[PLC∗ · PIP2

M], (D.16)

but [PLC∗ · PIP2
M] can be expressed solely in terms of [PIP2] as follows.

Eqn. (D.6) can be recast as

[P̂LC · PIP2

M
] + [PLC∗ · PIP2

M] =
[(PLC)T][PIP2

M]

K4 + [PIP2
M]

, (D.17)

while eqn (D.11) and eqn (D.12) are combined to give

[GP · PIP2
M] =

[(GP)T][PIP2
M]

[PIP2
M] +KG3

. (D.18)
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Substituting eqns (D.17) and (D.18) into eqn (D.9) there is obtained

[PIP2
M] +

[(GP)T][PIP2
M]

KG3 + [PIP2
M]

+
[(PLC)T][PIP2

M]

K4 + [PIP2
M]

= [PIP2]. (D.19)

Rearrangement of eqn (D.19) gives a cubic equation in [PIP2
M] which can in principle

be solved analytically to obtain [PIP2
M] = [PIP2

M]([PIP2]).

Now solving eqns (D.14) and (D.15) for [PLC∗ · PIP2
M] gives

[PLC∗ · PIP2
M] =

ρ[(PLC)T][PIP2
M]

K4 + [PIP2
M]

. (D.20)

It will be assumed that the amount of PLC and GFP-PHD is well below saturation.

This implies [(GP)T], [PIP2] � KG3 and [(PLC)T], [PIP2] � K4 so that eqn (D.19)

gives [PIP2
M] ≈ [PIP2] and eqn (D.20) gives [PLC∗ · PIP2

M] ≈ ρ[(PLC)T][PIP2]

K4
.

Therefore the hydrolysis of PIP2 is independent of GFP-PHD.

Also

[(PLC)T]KG3[GP · PIP2
M]

K4[GPM] +KG3[GP · PIP2
M]

<
[(PLC)T]KG3[GP · PIP2

M]

K4[GPM]
� KG3[GP · PIP2

M]

[GPM]
,

so eqn (D.7) reduces to eqn (3.15). The binding of GFP-PHD with PIP2 is therefore

independent of PLC.
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Appendix E

Approximate solution of the GFP-PHD equations

In this section a radially symmetric solution of eqns (3.27) and (3.28) is derived for

a cylindrical cell of radius a with an initial distribution of cytosolic GFP-PHD, l(r).

The adsorption characteristic is assumed to be linear where f([IP3], [PIP2]) is uniform

around the perimeter of the cell. The IP3 and PIP2 concentrations are a given function

of time hence f([IP3], [PIP2]) = f(t). The boundary value problem is, in terms of

u = [(GP)cyt],

∂u

∂t
= DGP∇2u, for 0 ≤ r ≤ a, (E.1)

DGP∇u · n̂ =
∂

∂t
(f(t)u) , at r = a, (E.2)

u(r, 0) = l(r), (E.3)

where

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
,

∇u · n̂ = −∂u
∂r
,

but the differential operators have been retained in the treatment below for the sake

of brevity.

The key assumption is that f changes over a much longer time scale than the diffusion

time scale a2/DGP . A two-timing perturbation procedure (see Chapter 4 of Kevorkian

and Cole, 1996) is carried out where τ measures the (short) diffusion time scale and

t̂ measures the (long) time scale of changes in f . Hence f = f(t̂) where t̂ = εt and

∂u/∂t̂ = O(1) for ε� 1 a small parameter. u is expanded thus

u(r, t) = u0(r, τ, t̂) + εu1(r, τ, t̂) + . . . , (E.4)

and the time derivative is
∂

∂t
=

∂

∂τ
+ ε

∂

∂t̂
. (E.5)

Eqns (E.4) and (E.5) are substituted into eqns (E.1)-(E.3) which yield to zeroth order

in ε,

∂u0

∂τ
= DGP∇2u0, for 0 ≤ r ≤ a,

DGP∇u0 · n̂ = f(t̂)
∂u0

∂τ
, at r = a,

u0(r, 0, 0) = l(r).
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The equilibrium solution over the fast time scale, where ∂u0/∂τ = 0, is

u0 = u0(t̂), (E.6)

that is, u0 is constant with respect to τ and r.

Now to first order in ε,

∂u0

∂t̂
+
∂u1

∂τ
= DGP∇2u1, for 0 ≤ r ≤ a, (E.7)

DGP∇u1 · n̂ = f(t̂)
∂u1

∂τ
+

∂

∂t̂

(
f(t̂)u0

)
, at r = a, (E.8)

u1(r, 0, 0) = 0.

The equilibrium solution over the fast time scale is found by putting ∂u1/∂t = 0 and

integrating eqn (E.7) to give

u1 =
1

4DGP

∂u0

∂t̂
r2 + c1(t̂). (E.9)

Eqn (E.9) must also satisfy eqn (E.8) but combining these two equations using Green’s

second identity shows that u0 satisfies the appropriate form of the conservation con-

dition (3.29). Substituting eqn (E.4) into eqn (3.29) yields a series of conservation

conditions, the first two are

2

∫ a

0

ru0 dr + 2af(t̂)u0 = a2U0, (E.10)

2

∫ a

0

ru1 dr + 2af(t̂)u1 = 0, (E.11)

where U0 = [GPT]. Eqn (E.10) implies

(
f(t̂) + γ

)
u0 = γU0, (E.12)

where γ = a/2. Substituting (E.9) into (E.11) determines c1(t̂),

c1(t̂) = − a2

4DGP

∂u0

∂t̂

[
γ/2 + f(t̂)

γ + f(t̂)

]
. (E.13)

Now substituting eqns (E.6),(E.9), (E.12) and (E.13) into eqn (E.4) gives

u =
γU0

γ + f(t̂)
+ ε

1

4DGP

∂u0

∂t̂

(
r2 − a2

[
γ/2 + f(t̂)

γ + f(t̂)

])
+O(ε2), (E.14)

and expressing the solution in terms of the time variable t,

u =
γU0

γ + f(t)
+

1

4DGP

γU0f
′(t)

[γ + f(t)]2

(
r2 − a2

[
γ/2 + f(t)

γ + f(t)

])
+O(ε2). (E.15)
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The diffusive delay is defined as the time difference between the GFP-PHD concentra-

tion being the same at two different radial positions. Equating u(r1, t̂1) and u(r2, t̂2) in

eqn (E.14) shows that this time difference must be of the order ε relative to the slow

time scale. Substituting t̂2 = t̂1 + ε∆t̂ into u(r1, t̂1) = u(r2, t̂2) and retaining terms to

order ε shows that ∆t = t2 − t1 =
1

4DGP
(r2

1 − r2
2) in terms of t and r.

For the case of a spherical cell the above derivation follows similarly with result

u =
γU0

γ + f(t)
+

1

8DGP

γU0f
′(t)

[γ + f(t)]2

(
r2 − a2

[
γ/2 + f(t)

γ + f(t)

])
+O(ε2),

where γ = a/3. The diffusive delay is ∆t =
1

8DGP
(r2

1 − r2
2).
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Appendix F

Computational methods used in Chapter 4

The numerical results reported in Chapter 4 were obtained using the MATLAB computer

package and are based on numerical approximations of f(x, y, z, t), defined by eqns

(4.13)-(4.19) and f ′(n, n∆), defined by eqns (4.29)-(4.30). The double series appearing

in both f and f ′ were truncated at sufficiently high values of k and m to ensure accurate

results (20 for both the series in k and m was generally sufficient). Prior to evaluation

of f or f ′, the requisite values of λm and λk were generated by solving eqns (4.18) and

(4.19) using the MATLAB function fzero.

In the numerical evaluation of I, when λ or |x| is large, the third term in eqn (4.14)

must be replaced by an asymptotic approximation to avoid overflow. It can be shown

that

e

√
λ|x|erfc

( |x|
2
√
t

+
√
λt

)
∼ e

−
( |x|2

4t
+ λt

)

√
π

( |x|
2
√
t

+
√
λt

) as

( |x|
2
√
t

+
√
λt

)
→ ∞.

Numerical simulations of the evolution of a Ca2+ wave, used to produce Figs. 4.5 and

4.6, were carried out by solving eqn (4.21) iteratively, commencing from a single spark.

The firing times, tN were determined using the function fzero with the starting guess

for tN being tN−1 + (tN−1 − tN−2) = 2tN−1 − tN−2, which is derived from the previous

firing time difference.

To produce the bifurcation diagrams shown in Figs. 4.2, 4.3 and 4.7-4.10, the functions

q, g and ψ(−1), defined by eqns (4.22),(4.23) and (4.28) respectively, were evaluated

over the given range of ∆ (typically at 500 points). For the functions g and ψ(−1), the

series were truncated at a large enough values of n to ensure accurate results (200 was

generally sufficient). From the values of q for each ∆, the value of ∆ corresponding to

αc was determined by a simple root search of the first difference of q, which is used to

approximate
∂q

∂∆
. For the stability analysis, the values of ∆ at the stationary points

of g were determined by a root search of the first difference of g. A root search also

determined approximate values for the zeros of ψ(−1).

To calculate variations in wave speed with respect to h, shown in Fig. 4.4, the value

of ∆ such that g(∆) − α = 0 was determined using the function fzero at consecutive

values of h. The initial guess used at each step was the solution for ∆ for the previous
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value of h. To determine the variations in αc with respect to h, an expression for
∂q

∂∆
was first derived (details omitted). The values of ∆ corresponding to the αc were

determined by numerically solving
∂q

∂∆
= 0 using the function fzero, for each value of

h.
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Appendix G

Derivation of the expression for the Ca2+ concentra-

tion due to a spark

To compute the Ca2+ concentration due to a Ca2+ release event in the domain B, it is

first necessary to consider the general solution of the diffusion equation,

∂c

∂t
= 4c, (G.16)

for the Ca2+ concentration, c(r, t) for t > 0 on a domain B with inhomogeneous, mixed

boundary conditions

∂c

∂n
= F(r, t) − β(r, t)c for r ∈ ∂B, (G.17)

where ∂B denotes the boundary of B, and initial condition

c(r, 0) = 0. (G.18)

In eqn (G.16), 4 is the Laplacian operator and in eqn (G.17),
∂

∂n
is the derivative

along the outward normal to B. The solution to eqns (G.16)-(G.18) can be expressed

as an integral over time and ∂B (see Kraut, 1967; p423),

c(r, t) =

∫ t

0

∫

∂B

(
G
∂c

∂n
− c

∂G

∂n

)
dS ′dt′, (G.19)

where G(r, t; r′, t′) is the Green’s function for the boundary value problem, being the

Ca2+ concentration at (r, t) due to a unit impulse of Ca2+ delivered at (r′, t′). The

function G satisfies the boundary value problem

∂G

∂t
= 4G+ δ(r − r′)δ(t− t′) for r, r′ ∈ B; t, t′ > 0, (G.20)

∂G

∂n
= −β(r, t)G for r ∈ ∂B, (G.21)

G = 0 when t < t′. (G.22)

The eqns (G.20)-(G.22) are now recast so that the impulse of Ca2+ appears as an

equivalent initial condition. In Cartesian coordinates, r = (x, y, z), these are

∂G

∂t
=

∂2G

∂x2
+
∂2G

∂y2
+
∂2G

∂z2
, (G.23)

∂G

∂y
= γsrG at y = 0, (G.24)

∂G

∂y
= −γslG at y = h, (G.25)

∂G

∂z
= ±γsrG at z = ∓w/2, (G.26)

G = δ(x− x′)δ(y − y′)δ(z − z′) when t = t′, (G.27)
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for −∞ < x, x′ < ∞, 0 < y, y′ < h, −w/2 < z, z′ < w/2, t > t′. Note that eqn

(G.21) becomes eqns (G.24)-(G.26) using the boundary conditions (4.2)-(4.5). Eqns

(G.23)-(G.27) can be solved by first taking the Fourier transform with respect to x and

separating variables in y, z and t. The corresponding eigenfunctions, Y (y), Z(z) and

T (t) satisfy
T ′

T
= −ω2 +

Y ′′

Y
+
Z ′′

Z
= −ω2 − λ2

m − λ2
k, (G.28)

where ω is the transformed x variable and λm, λk are eigenvalues determined by sub-

stituting the eigenfunctions into the boundary conditions (G.24)-(G.26). The resulting

eigenfunction expansion must satisfy the initial condition (G.27) hence

∞∑

k=0

∞∑

m=0

Akm cos
[
λk(z +

w

2
) − φk

]
cos(λmy − φm) = δ(y − y′)δ(z − z′), (G.29)

with φk, φm defined by eqn (4.17) and λk, λm satisfying eqns (4.18) and (4.19) respec-

tively. The Akm are determined using the orthogonality of the eigenfunctions Y, Z (see

Strauss, 1992; p115). The result is

G(r, t; r′, t′) =
e
−(x− x′)2

4(t− t′)
√

4π(t− t′)

×
∞∑

k=0

4λk cos
[
λk(z

′ + w
2
) − φk

]
cos
[
λk(z + w

2
) − φk

]

2λkw + sin 2(λkw − φk) + sin 2φk
e−λ

2
k(t− t′)

×
∞∑

m=0

4λm cos(λmy
′ − φm) cos(λmy − φm)

2λmh+ sin 2(λmh− φm) + sin 2φm

e−λ
2
m(t− t′), (G.30)

for −∞ < x, x′ < ∞, 0 < y, y′ < h, −w/2 < z, z′ < w/2, t > t′. Eqn (G.30)

is now substituted eqn (G.19). The integrand of eqn (G.19) reduces to zero on

the surfaces Q, R and S but is non-zero on the surface P since there F(r, t) =

− 1

ατ
[Θ(t) − Θ(t− τ)] δ(x)δ(z). The result is eqn (4.13) but with the function I de-

fined as

I(x, t, λ) =

∫ t

0

e
− x2

4(t− t′)
− λ(t− t′)

√
4π(t− t′)

dt′. (G.31)

The integral in eqn (G.31) can be evaluated using the appropriate substitution or

alternatively, the contour integral method employed by Coombes (2001), the result

being eqn (4.14).
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